Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-45851
Methods Mol Biol 2012 Jan 01;917:279-92. doi: 10.1007/978-1-61779-992-1_17.
Show Gene links Show Anatomy links

Chromatin immunoprecipitation analysis of Xenopus embryos.

Akkers RC , Jacobi UG , Veenstra GJ .


???displayArticle.abstract???
Chromatin immunoprecipitation (ChIP) is a powerful technique to study epigenetic regulation and transcription factor binding events in the nucleus. It is based on immune-affinity capture of epitopes that have been cross-linked to genomic DNA in vivo. A readout of the extent to which the epitope is associated with particular genomic regions can be obtained by quantitative PCR (ChIP-qPCR), microarray hybridization (ChIP-chip), or deep sequencing (ChIP-seq). ChIP can be used for molecular and quantitative analyses of histone modifications, transcription factors, and elongating RNA polymerase II at specific loci. It can also be applied to assess the cellular state of transcriptional activation or repression as a predictor of the cells' capabilities and potential. Another possibility is to employ ChIP to characterize genomes, as histone modifications and binding events occur at specific and highly characteristic genomic elements and locations. This chapter provides a step-by-step protocol of ChIP using early Xenopus embryos and discusses potential pitfalls and other issues relevant for successful probing of protein-genome interactions by ChIP-qPCR and ChIP-seq.

???displayArticle.pubmedLink??? 22956095
???displayArticle.link??? Methods Mol Biol