XB-ART-18633
J Biol Chem
1996 Jan 26;2714:1925-34.
Show Gene links
Show Anatomy links
Membrane topology of the human Na+/glucose cotransporter SGLT1.
???displayArticle.abstract???
The membrane topology of the human Na+/glucose cotransporter SGLT1 has been probed using N-glycosylation scanning mutants and nested truncations. Functional analysis proved essential for establishment of signal-anchor topology. The resultant model diverges significantly from previously held suppositions of structure based primarily on hydropathy analysis. SGLT1 incorporates 14 membrane spans. The N terminus resides extracellularly, and two hydrophobic regions form newly recognized membrane spans 4 and 12; the large charged domain near the C terminus is cytoplasmic. This model was evaluated further using two advanced empirically-based algorithms predictive of transmembrane helices. Helix ends were predicted using thermo-dynamically-based algorithms known to predict x-ray crystallographically determined transmembrane helix ends. Several considerations suggest the hydrophobic C terminus forms a 14th transmembrane helix, differentiating the eukaryotic members of the SGLT1 family from bacterial homologues. Our data inferentially indicate that these bacterial homologues incorporate 13 spans, with an extracellular N terminus. The model of SGLT1 secondary structure and the predicted helix ends signify information prerequisite for the rational design of further experiments on structure/function relationships.
???displayArticle.pubmedLink??? 8567640
???displayArticle.link??? J Biol Chem
???displayArticle.grants???
Species referenced: Xenopus laevis
Genes referenced: slc5a1 slc5a1.2