Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9383
J Biol Chem 2001 Mar 23;27612:8807-11. doi: 10.1074/jbc.C000879200.
Show Gene links Show Anatomy links

Multiple N-CoR complexes contain distinct histone deacetylases.

Jones PL , Sachs LM , Rouse N , Wade PA .


???displayArticle.abstract???
N-CoR (nuclear receptor corepressor) is a corepressor for multiple transcription factors including unliganded thyroid hormone receptors (TRs). In vitro, N-CoR can interact with the Sin3 corepressor, which in turn binds to the histone deacetylase Rpd3 (HDAC1), predicting the existence of a corepressor complex containing N-CoR, Sin3, and histone deacetylase. However, previous biochemical studies of endogenous Sin3 complexes have failed to find an N-CoR association. Xenopus laevis eggs and oocytes contain all of the necessary components for transcriptional repression by unliganded TRs. In this study, we report the biochemical fractionation of three novel macromolecular complexes containing N-CoR, two of which possess histone deacetylase activity, from Xenopus egg extract. One complex contains Sin3, Rpd3, and RbAp48; the second complex contains a Sin3-independent histone deacetylase; and the third complex lacks histone deacetylase activity. This study describes the first biochemical isolation of endogenous N-CoR-containing HDAC complexes and illustrates that N-CoR associates with distinct histone deacetylases that are both dependent and independent of Sin3. Immunoprecipitation studies show that N-CoR binds to unliganded TR expressed in the frog oocyte, confirming that N-CoR complexes are involved in repression by unliganded TR. These results suggest that N-CoR targets transcriptional repression of specific promoters through at least two distinct histone deacetylase pathways.

???displayArticle.pubmedLink??? 11254656
???displayArticle.link??? J Biol Chem


Species referenced: Xenopus laevis
Genes referenced: hdac1 hdac3 ncor1 rbbp4 sin3a