Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15290
Mech Dev 1998 Jan 01;701-2:15-24.
Show Gene links Show Anatomy links

Pre-MBT patterning of early gene regulation in Xenopus: the role of the cortical rotation and mesoderm induction.

Ding X , Hausen P , Steinbeisser H .


???displayArticle.abstract???
Patterning events that occur before the mid-blastula transition (MBT) and that organize the spatial pattern of gene expression in the animal hemisphere have been analyzed in Xenopus embryos. We present evidence that genes that play a role in dorsoventral specification display different modes of activation. Using early blastomere explants (16-128-cell stage) cultured until gastrula stages, we demonstrate by RT-PCR analysis that the expression of goosecoid (gsc), wnt-8 and brachyury (bra) is dependent on mesoderm induction. In contrast, nodal-related 3 (nr3) and siamois (sia) are expressed in a manner that is independent of mesoderm induction, however their spatially correct activation does require cortical rotation. The pattern of sia and nr3 expression reveals that the animal half of the 16-cell embryo is already distinctly polarized along the dorsoventral axis as a result of rearrangement of the egg structure during cortical rotation. Similar to the antagonistic activity between the ventral and the dorsal mesoderm, the ventral animal blastomeres can attenuate the expression of nr3 and sia in dorsal animal blastomeres. Our data suggest that no Nieuwkoop center activity at the blastula stage is required for the activation of nr3 and sia in vivo.

???displayArticle.pubmedLink??? 9510021



Species referenced: Xenopus
Genes referenced: ctnnb1 gsc nodal nodal3.1 sia1 tbxt wnt8a


???attribute.lit??? ???displayArticles.show???