Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-48419
Kidney Blood Press Res 2013 Jan 01;376:547-56. doi: 10.1159/000355735.
Show Gene links Show Anatomy links

Down-regulation of the Na+-coupled phosphate transporter NaPi-IIa by AMP-activated protein kinase.

Dërmaku-Sopjani M , Almilaji A , Pakladok T , Munoz C , Hosseinzadeh Z , Blecua M , Sopjani M , Lang F .


???displayArticle.abstract???
The Na(+)-coupled phosphate transporter NaPi-IIa is the main carrier accomplishing renal tubular phosphate reabsorption. It is driven by the electrochemical Na(+) gradient across the apical cell membrane, which is maintained by Na(+) extrusion across the basolateral cell membrane through the Na(+)/K(+) ATPase. The operation of NaPi-IIa thus requires energy in order to avoid cellular Na(+) accumulation and K(+) loss with eventual decrease of cell membrane potential, Cl(-) entry and cell swelling. Upon energy depletion, early inhibition of Na(+)-coupled transport processes may delay cell swelling and thus foster cell survival. Energy depletion is sensed by the AMP-activated protein kinase (AMPK), a serine/threonine kinase stimulating several cellular mechanisms increasing energy production and limiting energy utilization. The present study explored whether AMPK influences the activity of NAPi-IIa. cRNA encoding NAPi-IIa was injected into Xenopus oocytes with or without additional expression of wild-type AMPK (AMPK(α1)-HA+AMPK(β1)-Flag+AMPK(γ1)-HA), of inactive AMPK(αK45R) (AMPK(α1K45R)+AMPK(β1)-Flag+AMPK(γ1)-HA) or of constitutively active AMPK(γR70Q) (AMPK(α1)-HA+AMPK(β1)-Flag+AMPKγ1(R70Q)). NaPi-IIa activity was estimated from phosphate-induced current in dual electrode voltage clamp experiments. In NaPi-IIa-expressing, but not in water-injected Xenopus oocytes, the addition of phosphate (1 mM) to the extracellular bath solution generated a current (Ip), which was significantly decreased by coexpression of wild-type AMPK and of AMPK(γR70Q) but not of AMPK(αK45R). The phosphate-induced current in NaPi-IIa- and AMPK-expressing Xenopus ooocytes was significantly increased by AMPK inhibitor Compound C (20 µM). Kinetic analysis revealed that AMPK significantly decreased the maximal transport rate. The AMP-activated protein kinase AMPK is a powerful regulator of NaPi-IIa and thus of renal tubular phosphate transport. © 2013 S. Karger AG, Basel.

???displayArticle.pubmedLink??? 24356547
???displayArticle.link??? Kidney Blood Press Res


Species referenced: Xenopus laevis
Genes referenced: ag1 prkaa1