Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-21907
Mol Reprod Dev 1993 Dec 01;364:419-23. doi: 10.1002/mrd.1080360403.
Show Gene links Show Anatomy links

Zinc, iron, and copper contents of Xenopus laevis oocytes and embryos.

Nomizu T , Falchuk KH , Vallee BL .


???displayArticle.abstract???
Zinc is essential for vertebrate development; its deficiency results in multiple congenital malformations. Knowledge of the zinc biochemistry that underlies embryologic development is very limited. This has led us to investigate the zinc, iron, and copper contents of Xenopus laevis oocytes and embryos. Stage 1-6 oocytes, isolated from ovaries, and stage 1-40 embryos, obtained by in vitro fertilization techniques, were washed in metal-free water prior to digestion by 70% ultrapure HNO3. The metal content of the digests was analyzed by atomic absorption spectrometry. Stage 6 oocytes contain 65.8 +/- 4, 31.1 +/- 3, and 0.68 +/- 0.2 ng of zinc, iron and copper, respectively. The corresponding concentrations are 1, 0.5, and 0.01 mM in 1 microliter eggs. The metal content varies as a function of egg maturation. The zinc content increases from 3-7 to > 60 ng by stages 3 and 6, respectively. A similar pattern is noted for iron, which increases from 2-5 to 30 ng at analogous stages. In contrast, the copper content remains virtually unchanged in oocytes undergoing maturation. Importantly, the total of all three metals does not vary throughout the first 50 stages of development, when all tadpole organs are forming. Hence, the full complement of zinc, iron, and copper needed for incorporation into apoproteins during development is already present at a time when oocyte maturation is completed. The specific metalloproteins that store, donate, and accept these metals during induction and organogenesis and the alterations caused by metal deficiency can now be identified.

???displayArticle.pubmedLink??? 8305203
???displayArticle.link??? Mol Reprod Dev