Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9791
J Biol Chem 2001 Mar 23;27612:8968-78. doi: 10.1074/jbc.M007533200.
Show Gene links Show Anatomy links

Identification of two regulatory elements within the high mobility group box transcription factor XTCF-4.

Pukrop T , Gradl D , Henningfeld KA , Knochel W , Wedlich D , Kuhl M .


???displayArticle.abstract???
Some members of the Wnt family of extracellular glycoproteins regulate target gene expression by inducing stabilization and nuclear accumulation of beta-catenin, which functions as a transcriptional activator after binding to transcription factors of the T-cell factor/lymphoid enhancer factor (TCF/LEF) family. Three different members of this family have been identified in Xenopus laevis thus far that differ in their ability to influence mesodermal differentiation and to activate expression of the Wnt target gene fibronectin. Here we report on the isolation and characterization of additional variants of XTCF-4. We show that the differential ability of these proteins and other members of the TCF family to activate target genes is neither due to preferential interaction with transcriptional cofactors of the groucho family or SMAD4 nor to different DNA binding affinities. Expression of these proteins in an epithelial cell line reveals differences in their ability to form a ternary complex with DNA and beta-catenin. Interestingly, formation of this ternary complex was not sufficient to activate target gene expression as previously thought. Our experiments identify two amino acid sequence motifs, LVPQ and SFLSS, in the central domain of XTCF-4 that regulate the formation of the DNA-TCF-beta-catenin complex or activation of target genes, respectively. Biochemical studies reveal that the phosphorylation state of these XTCF-4 variants correlates with their ability to form a ternary complex with beta-catenin and DNA but not to activate target gene expression. The described variants of XTFC-4 with their different properties in complex formation provide strong evidence that in addition to the regulation of beta-catenin stability the isoforms of TCF/LEF transcription factors and their posttranslational modifications define the cellular response of a Wnt/wingless signal.

???displayArticle.pubmedLink??? 11124256
???displayArticle.link??? J Biol Chem


Species referenced: Xenopus laevis
Genes referenced: fn1 smad10 smad4 tcf4 tcf7l2 tle4