Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-25735
Nature 1990 Jul 26;3466282:379-82. doi: 10.1038/346379a0.
Show Gene links Show Anatomy links

Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase.

Félix MA , Labbé JC , Dorée M , Hunt T , Karsenti E .


???displayArticle.abstract???
The cell cycles of early Xenopus embryos consist of a rapid succession of alternating S and M phases. These cycles are controlled by the activity of a protein kinase complex (cdc2 kinase) which contains two subunits. One subunit is encoded by the frog homologue of the fission yeast cdc2+ gene, p34cdc2 and the other is a cyclin. The concentration of cyclins follows a sawtooth oscillation because they accumulate in interphase and are destroyed abruptly during mitosis. The association of cyclin and p34cdc2 is not sufficient for activation of cdc2 kinase, however; dephosphorylation of key tyrosine and threonine residues of p34cdc2 is necessary to turn on its kinase activity. The activity of cdc2 kinase is thus regulated by a combination of translational and post-translational mechanisms. The loss of cdc2 kinase activity at the end of mitosis depends on the destruction of the cyclin subunits. It has been suggested that this destruction is induced by cdc2 kinase itself, thereby providing a negative feedback loop to terminate mitosis. Here we report direct experimental evidence for this idea by showing that cyclin proteolysis can be triggered by adding cdc2 kinase to a cell-free extract of interphase Xenopus eggs.

???displayArticle.pubmedLink??? 2142754
???displayArticle.link??? Nature


Species referenced: Xenopus
Genes referenced: cdk1 pold1