XB-ART-3712
J Biol Chem
2004 Jun 18;27925:26540-5. doi: 10.1074/jbc.M402303200.
Show Gene links
Show Anatomy links
Relative proximity and orientation of helices 4 and 8 of the GLUT1 glucose transporter.
???displayArticle.abstract???
A structure has been proposed for glucose transporter-1 (GLUT1) based upon homology modeling that is consistent with the results of numerous mutagenesis studies (Mueckler, M., and Makepeace, C. (2004) J. Biol. Chem. 279, 10494-10499). To further test and refine this model, the relative orientation and proximity of transmembrane helices 4 and 8 were analyzed by chemical crosslinking of di-cysteine mutants created in a reporter GLUT1 construct. All six native cysteine residues of GLUT1 were changed to either glycine or serine residues by site-directed mutagenesis, resulting in a functional Glut1 construct with Cys mutated to Gly/Ser (C-less). The GLUT1 reporter molecule was engineered from C-less GLUT1 by creating a unique cleavage site for factor Xa protease within the central cytoplasmic loop and by eliminating the site of N-linked glycosylation. Fourteen functional di-cysteine mutants were then created from the C-less reporter construct, each mutant containing a single cysteine residue in helix 4 and one cysteine residue in helix 8. These mutants were expressed in Xenopus oocytes, and the sensitivity of each mutant to intramolecular crosslinking by two homo-bifunctional, thiol-specific crosslinking reagents, bismaleimidehexane and 1,4-phenylenedimaleimide, was ascertained by protease cleavage followed by immunoblot analysis. Four pairs of cysteine residues, Cys(148)/Cys(328), Cys(145)/Cys(328), Cys(148)/Cys(325), and Cys(145)/Cys(325), were observed to be in close enough proximity to be susceptible to crosslinking by one or both reagents. All five of the cysteine residues susceptible to crosslinking are predicted to lie on the same face of helix 4 or 8 and to reside close to the cytoplasmic face of the membrane. These data indicate that the cytoplasmic ends of helices 4 and 8 lie within 6-16 A of one another and that the two helices twist or tilt such that they are further than 16 A apart toward the center and the exoplasmic side of the membrane. An updated model for the clustering of the transmembrane helices of GLUT1 is presented based on these data.
???displayArticle.pubmedLink??? 15073187
???displayArticle.link??? J Biol Chem
???displayArticle.grants???
Species referenced: Xenopus laevis
Genes referenced: slc2a1 twist1