XB-ART-15649
J Neurochem
1998 Jan 01;701:40-6. doi: 10.1046/j.1471-4159.1998.70010040.x.
Show Gene links
Show Anatomy links
Sequences in the amino termini of GABA rho and GABA(A) subunits specify their selective interaction in vitro.
???displayArticle.abstract???
Molecular cloning has revealed that there are six classes of subunits capable of forming GABA-gated chloride channel receptors. GABA(A) receptors are composed of alpha, beta, gamma, delta, and epsilon/chi subunits, whereas GABA(C) receptors appear to contain rho subunits. However, retinal cells exhibiting GABA(C) responses express alpha, beta, and rho subunits, raising the possibility that GABA(C) receptors may be a mixture of subunit classes. Using in vitro translated protein, we determined that human GABA(A) receptor subunits alpha1, alpha5, and beta1 did not coimmunoprecipitate with full-length rho1, rho2, or the N-terminal domain of rho1 that contains signals for rho-subunit interaction. To explore the molecular mechanism underlying these apparently exclusive combinations, chimeric subunits were created and tested for interaction with the wild-type subunits. Transfer of the N terminus of beta1 to rho1 created a beta1rho1 chimera that coimmunoprecipitated with the alpha1 subunit but not with the rho2 subunit. Furthermore, exchanging the N terminus of the rho1 subunit with the corresponding region of beta1 produced a rho1beta1 chimera that interfered with rho1 receptor expression in Xenopus oocytes, whereas the full-length beta1 subunit had no effect. Together, these results indicate that sequences in the N termini direct assembly of rho subunits and GABA(A) subunits into GABA(C) and GABA(A) receptors, respectively.
???displayArticle.pubmedLink??? 9422345
???displayArticle.link??? J Neurochem
???displayArticle.grants???
Species referenced: Xenopus
Genes referenced: rho rho.2