XB-ART-2696
Neuroscience
2004 Jan 01;1294:1031-44. doi: 10.1016/j.neuroscience.2004.06.045.
Show Gene links
Show Anatomy links
Water transport in the brain: role of cotransporters.
???displayArticle.abstract???
It is generally accepted that cotransporters transport water in addition to their normal substrates, although the precise mechanism is debated; both active and passive modes of transport have been suggested. The magnitude of the water flux mediated by cotransporters may well be significant: both the number of cotransporters per cell and the unit water permeability are high. For example, the Na(+)-glutamate cotransporter (EAAT1) has a unit water permeability one tenth of that of aquaporin (AQP) 1. Cotransporters are widely distributed in the brain and participate in several vital functions: inorganic ions are transported by K(+)-Cl(-) and Na(+)-K(+)-Cl(-) cotransporters, neurotransmitters are reabsorbed from the synaptic cleft by Na(+)-dependent cotransporters located on glial cells and neurons, and metabolites such as lactate are removed from the extracellular space by means of H(+)-lactate cotransporters. We have previously determined water transport capacities for these cotransporters in model systems (Xenopus oocytes, cell cultures, and in vitro preparations), and will discuss their role in water homeostasis of the astroglial cell under both normo- and pathophysiologal situations. Astroglia is a polarized cell with EAAT localized at the end facing the neuropil while the end abutting the circulation is rich in AQP4. The water transport properties of EAAT suggest a new model for volume homeostasis of the extracellular space during neural activity.
???displayArticle.pubmedLink??? 15561418
???displayArticle.link??? Neuroscience
Species referenced: Xenopus
Genes referenced: aqp4