Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-35642
J Neurosci 2007 Mar 14;2711:2802-14. doi: 10.1523/JNEUROSCI.4376-06.2007.
Show Gene links Show Anatomy links

HCN pacemaker channel activation is controlled by acidic lipids downstream of diacylglycerol kinase and phospholipase A2.

Fogle KJ , Lyashchenko AK , Turbendian HK , Tibbs GR .


???displayArticle.abstract???
Hyperpolarization-activated pacemaker currents (I(H)) contribute to the subthreshold properties of excitable cells and thereby influence behaviors such as synaptic integration and the appearance and frequency of intrinsic rhythmic activity. Accordingly, modulation of I(H) contributes to cellular plasticity. Although I(H) activation is regulated by a plethora of neurotransmitters, including some that act via phospholipase C (PLC), the only second messengers known to alter I(H) voltage dependence are cAMP, internal protons (H+(I)s), and phosphatidylinositol-4,5-phosphate. Here, we show that 4beta-phorbol-12-myristate-13-acetate (4betaPMA), a stereoselective C-1 diacylglycerol-binding site agonist, enhances voltage-dependent opening of wild-type and cAMP/H+(I)-uncoupled hyperpolarization-activated, cyclic nucleotide-regulated (HCN) channels, but does not alter gating of the plant hyperpolarization-activated channel, KAT1. Pharmacological analysis indicates that 4betaPMA exerts its effects on HCN gating via sequential activation of PKC and diacylglycerol kinase (DGK) coupled with upregulation of MAPK (mitogen-activated protein kinase) and phospholipase A2 (PLA2), but its action is independent of phosphoinositide kinase 3 (PI3K) and PI4K. Demonstration that both phosphatidic acid and arachidonic acid (AA) directly facilitate HCN gating suggests that these metabolites may serve as the messengers downstream of DGK and PLA2, respectively. 4BetaPMA-mediated suppression of the maximal HCN current likely arises from channel interaction with AA coupled with an enhanced membrane retrieval triggered by the same pathways that modulate channel gating. These results indicate that regulation of excitable cell behavior by neurotransmitter-mediated modulation of I(H) may be exerted via changes in three signaling lipids in addition to the allosteric actions of cAMP and H+(I)s.

???displayArticle.pubmedLink??? 17360902
???displayArticle.pmcLink??? PMC6672581
???displayArticle.link??? J Neurosci
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: camp dguok kyat1 mapk1 pla2g1b

References [+] :
Anderson, Role of lipids in the MAPK signaling pathway. 2006, Pubmed