Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-25006
J Neurosci 1991 Mar 01;113:869-80.
Show Gene links Show Anatomy links

A mouse brain homolog of the Drosophila Shab K+ channel with conserved delayed-rectifier properties.

Pak MD , Covarrubias M , Ratcliffe A , Salkoff L .


???displayArticle.abstract???
We have cloned and expressed a mouse brain K+ channel that is the homolog of the Drosophila Shab K+ channel. Mouse and Drosophila Shab K+ channels (mShab and fShab, respectively) represent an instance of K+ channels and structurally related species that are both functionally and structurally conserved; most kinetic, voltage-sensitive, and pharmacological properties are similar for the 2 channels. The greatest functional difference between the currents is recovery from inactivation, which is several times slower for mShab than for fShab currents. In addition to conserved structure, the mShab polypeptide has an unusually long nonconserved region at the carboxyl end of the protein. Truncation of 293 residues from the carboxyl end produced no noticeable change in voltage-sensitive, kinetic, or pharmacological properties. Thus, the measured functional properties of mShab are determined by the remaining 564 residues, most of which are conserved. The mShab and fShab channels are naturally occurring structural variants having substitutions in conserved portions that appear relatively neutral with respect to all measured properties except for, possibly, the rate of recovery from inactivation. The mShab current closely resembles a native delayed-rectifier-type potassium current, IK, in hippocampal neurons.

???displayArticle.pubmedLink??? 2002364
???displayArticle.pmcLink??? PMC6575340
???displayArticle.link??? J Neurosci
???displayArticle.grants??? [+]