Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10018
J Exp Zool 2000 Oct 15;2883:193-204. doi: 10.1002/1097-010x(20001015)288:3<193::aid-jez1>3.0.co;2-v.
Show Gene links Show Anatomy links

p68, a DEAD-box RNA helicase, is expressed in chordate embryo neural and mesodermal tissues.

Seufert DW , Kos R , Erickson CA , Swalla BJ .


???displayArticle.abstract???
The p68 DEAD-box RNA helicases have been identified in diverse organisms, including yeast, invertebrates, and mammals. DEAD-box RNA helicases are thought to unwind duplexed RNAs, and the p68 family may participate in initiating nucleolar assembly. Recent evidence also suggests that they are developmentally regulated in chordate embryos. bobcat, a newly described member of this gene family, has been found in eggs and developing embryos of the ascidian urochordate, Molgula oculata. Antisense RNA experiments have implicated this gene in establishing basic chordate features, including the notochord and neural tube in ascidians (Swalla et al. 1999). We have isolated p68 homologs from chick and Xenopus in order to investigate their possible role in vertebrate development. We show that embryonic expression of p68 in chick, frog, and ascidian embryos is high in the developing brain and spinal cord as well as in the sensory vesicles. In frog embryos, p68 expression also marks the streams of migrating cranial neural crest cells throughout neural tube development and in tailbud stages, but neural crest expression is faint in chick embryos. Ascidian embryos also show mesodermal p68 expression during gastrulation and neurulation, and we document some p68 mesodermal expression in both chick and frog. Thus, as shown in these studies, p68 is expressed in early neural development and in various mesodermal tissues in a variety of chordate embryos, including chick, frog, and ascidian. Further functional experiments will be necessary to understand the role(s) p68 may play in vertebrate development.

???displayArticle.pubmedLink??? 11069138
???displayArticle.link??? J Exp Zool
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: tbx2