Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10068
Eur J Biochem 2000 Nov 01;26722:6594-601.
Show Gene links Show Anatomy links

Transcription inhibitors stimulate translation of 5' TOP mRNAs through activation of S6 kinase and the mTOR/FRAP signalling pathway.

Loreni F , Thomas G , Amaldi F .


???displayArticle.abstract???
We have analysed the effect of transcription inhibitors on the polysomal localization of 5' terminal oligopyrimidine (TOP-) mRNAs. It is known that, in vertebrates, the translation of this group of mRNAs is regulated according to the growth status of the cell. Mitogenic stimulation of quiescent cells induces a rapid recruitment of TOP mRNAs from translationally inactive light messenger ribonucleoprotein particles to polysomes. It was found that administration of transcription inhibitors to resting cells causes a similar collective translational activation of TOP mRNAs, without affecting global translation. A number of transcription inhibitors were tested in amphibian and mammalian cultured cells. Actinomycin D (act D), cordycepin, and 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole caused a similar activation whereas alpha-amanitin or low doses of act D did not induce the translational response. Concentrations of act D sufficient to induce TOP mRNA translation also induce 40S ribosomal protein S6 kinases 1 (S6K1) activation. Moreover at these concentrations of act D increased phosphorylation of 4E-BP1 was also observed, indicating the involvement of FRAP/mTOR. Consistent with this observation, pretreatment of resting cells with rapamycin suppresses the activation of TOP mRNA translation induced by act D. These results indicate that the effect of act D on translation is mediated by the S6Ks through FRAP/mTOR.

???displayArticle.pubmedLink??? 11054111
???displayArticle.link??? Eur J Biochem


Species referenced: Xenopus laevis