Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-10398
Biophys J 2000 Sep 01;793:1358-68.
Show Gene links Show Anatomy links

Sh and eag K(+) channel subunit interaction in frog oocytes depends on level and time of expression.

Chen ML , Hoshi T , Wu CF .


???displayArticle.abstract???
Subcellular clustering of ion channels critically affects neuronal function. Coexpression of Eag and Sh channel subunits in Xenopus oocytes leads to accelerated decay of the Sh-like transient K(+) current (Chen, M.-L., T. Hoshi, and C.-F. Wu. 1996. Neuron. 17:535-542). We report that such interaction depends critically on functional expression level (controlled by RNA injection quantities and indicated by current amplitudes) and developmental time after RNA injection. The accelerated decay became apparent 3 days after coinjection and increased thereafter. This was observed in different ionic conditions and at different voltage steps. However, decay was not accelerated at low expression levels, either within 1-2 days after injection or with reduced amounts of RNA. With sequential RNA injection, preformation of either Eag or Sh channels prevented interactions with the other subunit. The carboxyl terminus of Eag was found to be involved in accelerating, and in retarding recovery from, N-type inactivation. The interaction was reduced upon patch excision in macropatch measurements, suggesting involvement of cytosolic factors. We have reproduced the absence of interaction between Eag and Sh reported previously within 2 days after RNA injection and with low levels of current expression (Tang, C.-Y., C. T. Schulteis, R. M. Jiménez, and D. M. Papazian. 1998. Biophys. J. 75:1263-1270). Our findings demonstrate that heterologous expression of channels in Xenopus oocytes is a dynamic process influenced by cell physiology and development. These factors must be considered in interpreting the functional properties of heterologously expressed channels.

???displayArticle.pubmedLink??? 10968998
???displayArticle.pmcLink??? PMC1301030
???displayArticle.link??? Biophys J


Species referenced: Xenopus laevis
Genes referenced: kcnh1

References [+] :
Anderson, Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. 1977, Pubmed, Xenbase