Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-11604
Dev Growth Differ 1999 Dec 01;416:645-56. doi: 10.1046/j.1440-169x.1999.00465.x.
Show Gene links Show Anatomy links

Molecular basis of left-right asymmetry.

Yonei-Tamura S , Izpisúa Belmonte JC .


???displayArticle.abstract???
In vertebrates visceral asymmetry is conserved along the left-right axis within the body. Only a small percentage of randomization (situs ambiguus), or complete reversal (situs inversus) of normal internal organ position and structural asymmetry is found in humans. A breakdown in left-right asymmetry is occasionally associated with severe malformations of the organs, clearly indicating that the regulated asymmetric patterning could have an evolutionary advantage over allowing random placement of visceral organs. Genetic, molecular and cell transplantation experiments in humans, mice, zebrafish, chick and Xenopus have advanced our understanding of how initiation and establishment of left-right asymmetry occurs in the vertebrate embryo. In particular, the chick embryo has served as an extraordinary animal model to manipulate genes, cells and tissues. This chick model system has enabled us to reveal the genetic pathways that occur during left-right development. Indeed, genes with asymmetric expression domains have been identified and well characterized using the chick as a model system. The present review summarizes the molecular and experimental studies employed to gain a better understanding of left-right asymmetry pattern formation from the first split of symmetry in embryos, to the exhibition of asymmetric morphologies in organs.

???displayArticle.pubmedLink??? 10646794
???displayArticle.link??? Dev Growth Differ