XB-ART-13341
J Biol Chem
1999 Mar 26;27413:8460-9.
Show Gene links
Show Anatomy links
Xenopus cytosolic thyroid hormone-binding protein (xCTBP) is aldehyde dehydrogenase catalyzing the formation of retinoic acid.
???displayArticle.abstract???
Amino acid sequencing of an internal peptide fragment derived from purified Xenopus cytosolic thyroid hormone-binding protein (xCTBP) demonstrates high similarity to the corresponding sequence of mammalian aldehyde dehydrogenase 1 (ALDH1) (Yamauchi, K., and Tata, J. R. (1994) Eur. J. Biochem. 225, 1105-1112). Here we show that xCTBP was co-purified with ALDH and 3,3',5-triiodo-L-thyronine (T3) binding activities. By photoaffinity labeling with [125I]T3, a T3-binding site in the xCTBP was estimated to reside in amino acid residues 93-114, which is distinct from the active site of the enzyme but present in the NAD+ binding domain. The amino acid sequences deduced from the two isolated xALDH1 cDNAs (xALDH1-I and xALDH1-II) were 94.6% identical to each other and very similar to those of mammalian ALDH1 enzymes. The two recombinant xALDH1 proteins exhibit both T3 binding activity and ALDH activity converting retinal to retinoic acid (RA), which are similar to those of xCTBP. The mRNAs were present abundantly in kidney and intestine of adult female Xenopus. Interestingly, their T3 binding activities were inhibited by NAD+ and NADH but not by NADP+ and NADPH, whereas NAD+ was required for their ALDH activities. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular level of free T3.
???displayArticle.pubmedLink??? 10085078
???displayArticle.link??? J Biol Chem
Species referenced: Xenopus
Genes referenced: aldh1a1 ctbp2