Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-14915
Am J Physiol 1998 May 01;2745:C1417-23. doi: 10.1152/ajpcell.1998.274.5.C1417.
Show Gene links Show Anatomy links

Peroxynitrite inhibits amiloride-sensitive Na+ currents in Xenopus oocytes expressing alpha beta gamma-rENaC.

DuVall MD , Zhu S , Fuller CM , Matalon S .


???displayArticle.abstract???
We examined the effect of peroxynitrite (ONOO-) on the cloned rat epithelial Na+ channel (alpha beta gamma-rENaC) expressed in Xenopus oocytes. 3-Morpholinosydnonimine (SIN-1) was used to concurrently generate nitric oxide (.NO) and superoxide (O2-.), which react to form ONOO-, a species known to promote protein nitration and oxidation. Under control conditions, oocytes displayed an amiloride-sensitive whole cell conductance of 7.4 +/- 2.8 (SE) microS. When incubated at 18 degrees C with SIN-1 (1 mM) for 2 h (final ONOO- concentration = 10 microM), the amiloride-sensitive conductance was reduced to 0.8 +/- 0.5 microS. To evaluate whether the observed inhibition was due to ONOO-, as opposed to .NO, we also exposed oocytes to SIN-1 in the presence of urate (500 microM), a scavenger of ONOO- and superoxide dismutase, which scavenges O2-., converting SIN-1 from an ONOO- to an .NO donor. Under these conditions, conductance values remained at control levels following SIN-1 treatment. Tetranitromethane, an agent that oxidizes sulfhydryl groups at pH 6, also inhibited the amiloride-sensitive conductance. These data suggest that oxidation of critical sulfhydryl groups within rENaC by ONOO- directly inhibits channel activity.

???displayArticle.pubmedLink??? 9612230
???displayArticle.link??? Am J Physiol
???displayArticle.grants??? [+]