XB-ART-16523
Braz J Med Biol Res
1997 May 01;305:577-90. doi: 10.1590/s0100-879x1997000500003.
Show Gene links
Show Anatomy links
Connexin domains relevant to the chemical gating of gap junction channels.
???displayArticle.abstract???
Most cells exchange ions and small metabolites via gap junction channels. These channels are made of two hemichannels (connexons), each formed by the radial arrangement of six connexin (Cx) proteins. Connexins span the bilayer four times (M1-M4) and have both amino- and carboxy-termini (NT, CT) at the cytoplasmic side of the membrane, forming two extracellular loops (E1, E2) and one inner (IL) loop. The channels are regulated by gates that close with cytosolic acidification (e.g., CO2 treatment) or increased calcium concentration, possibly via calmodulin activation. Although gap junction regulation is still unclear, connexin domains involved in gating are being defined. We have recently focused on the CO2 gating sensitivity of Cx32, Cx38 and various mutants and chimeras expressed in Xenopus oocytes and studied by double voltage clamp. Cx32 is weakly sensitive to CO2, whereas Cx38 is highly sensitive. A Cx32 chimera containing the second half of the inner loop (IL2) of Cx38 was as sensitive to CO2 as Cx38, indicating that this domain plays an important role. Deletion of CT by 84% did not affect CO2 sensitivity, but replacement of 5 arginines (R) with asparagines (N) at the beginning of CT (C1) greatly enhanced the CO2 sensitivity of Cx32. This suggests that whereas most of CT is irrelevant, positive charges of C1 maintain the CO2 sensitivity of Cx32 low. As a hypothesis we have proposed a model that involves charge interaction between negative residues of the beginning of IL (IL1) and positive residues of either C1 or IL2. Open and closed channels would result from IL1-C1 and IL1-IL2 interactions, respectively.
???displayArticle.pubmedLink??? 9283624
???displayArticle.link??? Braz J Med Biol Res
???displayArticle.grants???
Species referenced: Xenopus
Genes referenced: gja4.2 gjb1