Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-17469
Drug Chem Toxicol 1996 Nov 01;194:267-78. doi: 10.3109/01480549608998237.
Show Gene links Show Anatomy links

Evaluation of the developmental toxicity of theophylline, dimethyluric acid, and methylxanthine metabolites using Xenopus.

Fort DJ , Stover EL , Propst T , Hull MA , Bantle JA .


???displayArticle.abstract???
The developmental toxicities of theophylline and theophylline metabolites were evaluated using FETAX (Frog Embryo Teratogenesis Assay - Xenopus). Young X. laevis embryos were exposed to theophylline, 1-methylxanthine, 3-methylxanthine, or 1, 3-dimethyluric acid in each of two separate concentration-response experiments with and without an exogenous metabolic activation system (MAS) and/or inhibited MAS. The MAS was treated with carbon monoxide (CO), cimetidine (CIM), or ellipticine (ELL) to selectively modulate cytochrome P-450 activity. Addition of the MAS and CIM-MAS reduced the developmental toxicity of theophylline. Addition of the ELL- or CO-inhibited MAS did not reduce the developmental toxicity of theophylline. Addition of the intact MAS did not alter the developmental toxicity of 1-methyl- or 3-methylxanthine which were slightly more developmentally toxic on an equimolar basis than theophylline itself. 1, 3-dimethyluric acid was not developmentally toxic at maximum soluble concentrations in 1% (V/V) DMSO. Results from these studies suggested that P-450, specifically ELL-inhibited P-450 (aryl hydrocarbon hydroxylase) may have been responsible for detoxification of theophylline and that 1, 3 dimethyluric acid represented the primary detoxification metabolite of theophylline.

???displayArticle.pubmedLink??? 8972234
???displayArticle.link??? Drug Chem Toxicol


Species referenced: Xenopus laevis
Genes referenced: ell