Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-17863
Cell Calcium 1996 Aug 01;202:105-21. doi: 10.1016/s0143-4160(96)90100-1.
Show Gene links Show Anatomy links

Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips.

Parker I , Choi J , Yao Y .


???displayArticle.abstract???
Liberation of sequestered Ca2+ ions in Xenopus oocytes by the second messenger inositol 1,4,5-trisphosphate (InP3) occurs from functionally discrete sites, which are spaced at intervals of several microns and probably represent clusterings of InsP3 receptor/channels (InsP3R) in the endoplasmic reticulum. As well as requiring InsP3, opening of release channels is regulated by dual positive and negative feedback by cytosolic Ca2+, leading to regenerative Ca2+ transients. Because the sensitivity of this process is determined by [InsP3], the ability of Ca2+ ions diffusing from one location to activate increasingly distant InsP3R is enhanced by increasing [InsP3]. Together with the spatial distribution of receptors, this results in generation of a hierarchy of Ca2+ release events, which may involve individual InsP3R (Ca2+ 'blips'), concerted activation of several receptors within a single release site (Ca2+ 'puffs'), and recruitment of successive sites by Ca2+ diffusing over micron distances to produce propagating Ca2+ waves. Thus, Ca2+ signalling in the oocyte is organized as at least two sizes of elemental 'building blocks'; highly localized Ca2+ transients that arise autonomously and stochastically from discrete sites at low [InsP3], but which become coordinated at higher [InsP3] to produce global Ca2+ responses.

???displayArticle.pubmedLink??? 8889202
???displayArticle.link??? Cell Calcium
???displayArticle.grants??? [+]