Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-17917
Comp Biochem Physiol A Physiol 1996 Aug 01;1144:335-40. doi: 10.1016/0300-9629(96)00019-9.
Show Gene links Show Anatomy links

Differential degradation of extracellular adenine nucleotides by folliculated oocytes of Xenopus laevis.

Ziganshin AU , Ziganshina LE , King BF , Burnstock G .


???displayArticle.abstract???
The degradation of extracellular ATP and ADP by Xenopus oocytes was studied to investigate whether one or two ecto-enzymes are responsible for breakdown of both nucleotides. At a concentration of 100 microM, the half-life of ATP and ADP was 33 and 40 min, respectively. Degradation of ATP caused an initial fast and then a sustained accumulation of ADP in the buffer, while the concentration of AMP in the buffer increased slowly, but progressively, in a relatively linear manner. The rates of degradation of ATP and ADP were similar at pH levels between 7 and 10, but the velocity of breakdown of ATP was significantly higher than that of ADP at pH of 5-6. In divalent cation-free buffer, the addition of 0.1 mM of Ca2+, but not equimolar Mg2+, significantly potentiated the degradation of ATP by oocytes while, in the case of ADP, each of these divalent cations were able to potentiate its degradation. The rate of hydrolysis of ATP and its kinetic constants were not significantly different in the presence or absence of ADP (50 microM). In conclusion, differences in pH- and cation-dependency, and absence of inhibitory effect of ADP on degradation of ATP suggest that degradation of ATP and ADP by oocytes is provided by separate enzymes, namely Ca2+/Mg(2+)-dependent ecto-ATPase and ecto-ADPase, rather than by one ecto-enzyme.

???displayArticle.pubmedLink??? 8759282
???displayArticle.link??? Comp Biochem Physiol A Physiol
???displayArticle.grants??? [+]