Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-2166
J Agric Food Chem 2005 Mar 23;536:1955-9. doi: 10.1021/jf048492c.
Show Gene links Show Anatomy links

Effect of 3-O-octanoyl-(+)-catechin on the responses of GABA(A) receptors and Na+/glucose cotransporters expressed in xenopus oocytes and on the oocyte membrane potential.

Aoshima H , Okita Y , Hossain SJ , Fukue K , Mito M , Orihara Y , Yokoyama T , Yamada M , Kumagai A , Nagaoka Y , Uesato S , Hara Y .


???displayArticle.abstract???
Recently, 3-O-octanoyl-(+)-catechin (OC) was synthesized from (+)-catechin (C) by incorporation of an octanoyl chain into C in the light of (-)-epicatechin gallate (ECg) and (-)-epigallocatechin gallate (EGCg), which are the major polyphenols found in green tea and have strong physiological activities. OC was found to inhibit the response of ionotropic gamma-aminobutyric acid (GABA) receptors (GABA(A) receptors) and Na+/glucose cotransporters expressed in Xenopus oocytes in a noncompetitive manner more strongly than does C. OC also induced a nonspecific membrane current and decreased the membrane potential of the oocyte, and thus death of the oocyte occurred even at lower concentrations than that induced by C or EGCg. Although EGCg produced H2O2 in aqueous solution, OC did not. This newly synthesized catechin derivative OC possibly binds to the lipid membrane more strongly than does C, Ecg, or EGCg and as a result perturbs the membrane structure.

???displayArticle.pubmedLink??? 15769120
???displayArticle.link??? J Agric Food Chem