Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-24404
J Physiol 1991 Nov 01;443:587-99.
Show Gene links Show Anatomy links

Halide transport in Xenopus oocytes.

Katayama Y , Widdicombe JH .


???displayArticle.abstract???
1. Radioisotopes and intracellular microelectrodes were used to characterize the permeability of Xenopus oocytes to chloride and other halides. 2. Uptake of 36Cl had a half-time for equilibration of approximately 3 h, with an initial rate of Cl- entry corresponding to a permeability coefficient of 3.9 x 10(-7) cm/s, and an equilibrium uptake of 36Cl of 33 mM. 3. Replacement of bathing Na+ by K+ depolarized the oocytes from -46 to -7 mV and stimulated influx approximately 3-fold. 4. Influx was linearly dependent on bathing [Cl-] and was temperature dependent with an activation energy of 46 kJ/mol. Influx of 125I of 36Cl was not affected by the presence of equal concentrations of other halides or thiocyanate. These results are consistent with a channel-mediated entry mechanism. 5. Diphenylamine-2-carboxylate (DPAC) and 9-anthracene carboxylate (9-AC), blockers of Cl- channels in other cells, inhibited Cl- entry with dissociation constants (Kds) of approximately 5 x 10(-4) and approximately 10(-3) M, respectively. Inhibitors of Cl(-)-HCO3- exchange or Na(+)-K(+)-2Cl- co-transport did not affect Cl- influx. 6. Attempts to lower or raise intracellular Ca2+ with BAPTA or A23187, respectively, were also without effect on Cl- influx. 7. The halide selectivity sequence determined with isotopes was I- (3.2) greater than Br- (1.3) greater than Cl- (1.0). However, DPAC inhibited almost all of the 36Cl influx but only a small fraction of 125I influx. 8. Replacement of bathing Cl- by I- or Br-resulted in hyperpolarizations, from which the same selectivity sequence was determined. 9. Replacement of bathing Cl- by gluconate caused a marked depolarization, which was inhibited by DPAC and, less potently, by 9-AC.

???displayArticle.pubmedLink??? 1822540
???displayArticle.pmcLink??? PMC1179861
???displayArticle.link??? J Physiol
???displayArticle.grants??? [+]

Genes referenced: uqcc6

References [+] :
Armstrong, Ionic pores, gates, and gating currents. 1974, Pubmed