Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-2461
Cell Cycle 2005 Feb 01;42:235-8.
Show Gene links Show Anatomy links

ATM and ATR check in on origins: a dynamic model for origin selection and activation.



???displayArticle.abstract???
Initiation of DNA replication occurs at origins of replication, traditionally defined by specific sequence elements. Sequence-dependent initiation of replication is the rule in prokaryotes and in the yeast Saccharomyces cereviseae. However, sequence-dependent initiation does not appear to be absolutely required in metazoan eukaryotes. Origin firing is instead likely dependent on stochastic initiation from chromatin-defined loci, despite the demonstration of some specific origins. Based on some recent observations in Xenopus laevis egg extracts and in mammalian cell culture, we propose that timing of origin firing is dependent on feedback from active replicons. This dynamic regulation of replication is mediated by sensing of ongoing replication by the DNA-damage checkpoint kinases ATM and ATR, which in turn downregulate neighboring and distal origins and replicons by inhibition of the S-phase kinases Cdk2 and Cdc7 and by inhibition of the replicative Mcm helicase. Origin selection, activation, and replicon progression are therefore constrained in both space and time via feedback from the cell cycle and ongoing replication.

???displayArticle.pubmedLink??? 15655372
???displayArticle.link??? Cell Cycle


Species referenced: Xenopus laevis
Genes referenced: antxr1 atm atr cdc7 cdk2 mmut