XB-ART-30154
J Biol Chem
1983 Jul 10;25813:7935-41.
Show Gene links
Show Anatomy links
Inhibition of Xenopus oocyte adenylate cyclase by progesterone and 2',5'-dideoxyadenosine is associated with slowing of guanine nucleotide exchange.
???displayArticle.abstract???
Adenylate cyclase activity in Xenopus oocyte membranes measured in the presence of guanyl-5'-yl imidodiphosphate and 1.5 mM Mn2+ was maximally inhibited to 57% of control by progesterone and to 89% by the P site agonists, 2',5'-dideoxyadenosine and 9-beta-d-arabinofuranosyladenine. Inhibition by saturating concentrations of 2',5'-dideoxyadenosine and progesterone was not additive, suggesting that inhibition of oocyte adenylate cyclase by progesterone may share a common mechanism with P site inhibition. Kinetic analysis of the effect of progesterone and 2',5'-dideoxyadenosine on the hysteretic activation of adenylate cyclase by guanyl-5'-yl imidodiphosphate indicates that both hormones exert their effects, at least in part, by lengthening the lag in cAMP formation, and this hysteretic effect is inversely proportional to the concentration of guanine nucleotide in the incubation mixture. Direct measurement of [3H] guanine nucleotide release from oocyte membranes preloaded with [3H] GTP demonstrated that treatment with either progesterone or 2',5'-dideoxyadenosine slows the rate of nucleotide exchange. Inhibition of oocyte adenylate cyclase by 2',5'-dideoxyadenosine was potentiated by millimolar concentrations of Mn2+, but inhibition by progesterone was abolished. The results indicate that inhibition of Xenopus oocyte adenylate cyclase by progesterone has features in common with both P site and receptor-mediated inhibitory mechanisms.
???displayArticle.pubmedLink??? 6305962
???displayArticle.link??? J Biol Chem
???displayArticle.grants???
Genes referenced: camp