Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-31377
J Cell Biol 1980 Jul 01;861:6-20.
Show Gene links Show Anatomy links

Distribution of muscarinic acetylcholine receptors and presynaptic nerve terminals in amphibian heart.

Hartzell HC .


???displayArticle.abstract???
At many synapses, neurotransmitter receptor molecules in the postsynaptic membrane are selectively concentrated at a site directly opposite the presynaptic nerve terminal. In this paper, I examine acetylcholine (ACh) receptor distribution in cardiac muscle in relatin to the distribution of presynaptic axonal varicosities. The density of varicosities, stained with zinc iodide and osmium, ranges from 0.7/100 micrometer 2 in ventricle to 1.9/100 micrometer 2 in sinus venosus. It is estimated that < 3% of the muscle surface is apposed to presynaptic varicosities. ACh receptors, however, are randomly distributed on the muscle surface and not concentrated in patche. ACh receptor distribution was determined by iontophoretic application of ACh and mapping of ACh sensitivity and by [3H]QNB (quinuclidinyl benzilate) binding and autoradiography [3H]QNB binds with > 90% specificity to a single, saturable, high-affinity (Kd = 11.1 pM at 21 degrees C) class of binding sites. QNB binding sites are thought to correspond to ACh receptors, because muscarinic agonists compete for [3H]QNB binding and produce a hyperpolarization in the sinus venosus with the same order of potency. The concentrations of QNB binding sites in the sinus and atria are about twice those found in ventricle. The receptor density corresponds to the density of innervation measured by zinc iodide and osmium staining. Autoradiographic experiments show that [3H]QNB binding sites are distributed randomly over the entire surface of the muscle. This distribution of ACh receptors in cardiac muscle has important implications for the function of the cardiac neuroeffector junction.

???displayArticle.pubmedLink??? 6968315
???displayArticle.pmcLink??? PMC2110656




References [+] :
Brown, The action of a single vagal volley on the rhythm of the heart beat. 1934, Pubmed