Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
???displayArticle.abstract???
Only a subset of cleavage stage blastomeres in the Xenopus embryo is competent to contribute cells to the retina; ventral vegetal blastomeres do not form retina even when provided with neuralizing factors or transplanted to the most retinogenic position of the embryo. These results suggest that endogenous maternal factors in the vegetal region repress the ability of blastomeres to form retina. Herein we provide three lines of evidence that two vegetal-enriched maternal factors (VegT, Vg1), which are known to promote endo-mesodermal fates, negatively regulate which cells are competent to express anterior neural and retinal fates. First, both molecules can repress the ability of dorsal-animal retinogenic blastomeres to form retina, converting the lineage from neural/retinal to non-neural ectodermal and endo-mesodermal fates. Second, reducing the endogenous levels of either factor in dorsal-animal retinogenic blastomeres expands expression of neural/retinal genes and enlarges the retina. The dorsal-animal repression of neural/retinal fates by VegT and Vg1 is likely mediated by Sox17alpha and Derriere but not by XNr1. VegT and Vg1 likely exert their effects on neural/retinal fates through at least partially independent pathways because Notch1 can reverse the effects of VegT and Derriere but not those of Vg1 or XNr1. Third, reduction of endogenous VegT and/or Vg1 in ventral vegetal blastomeres can induce a neural fate, but only allows expression of a retinal fate when both BMP and Wnt signaling pathways are concomitantly repressed.
Fig. 5. Reduction of VegT and Vg1 in the D1.1 lineage increases the size of the neural ectoderm. (A) Reduction of VegT by morpholino injection (VegTMO) and of Vg1 by expression of a dominant-negative construct (dnVg1) enlarged the retina (r) and forebrain (fb). Note the abundant D1.1 progeny (green) in both structures (cf. Fig. 2E). Reduction of both factors (VegTMO/dnVg1) resulted in a similar phenotype. (B) The mean volumes of retinas in embryos in which control morpholinos (cMO, cVegTMO) were injected are not different from GFP controls (Fig. 2B). Those from VegTMO-injected embryos are significantly larger on both sides, and those from dnVg1-injected embryos are significantly larger on the injected side. Those from embryos injected with both constructs (VegTMO/dnVg1) are larger than for dnVg1 alone and similar to those from VegTMO alone. * Indicates p < 0.01 compared to GFP controls. Numbers in parentheses indicate size of sample. (C) The expression domains of pan-neural plate (sox3, notch1; white bars indicate measurement of width of domain) and retinal (rx1; arrows) genes are expanded on the side (right) injected with VegTMO or dnVg1. The expansion of neural plate markers is somewhat enhanced in embryos co-injected with VegTMO and dnVg1 (see also Table 1). (D) The expression domains of mesodermal (Xbra) and endodermal (sox17α, edd) genes after injection into D1.1 of the constructs indicated on the left. The only notable effect is repression of Xbra by dnVg1 (arrow). (E) The expansion of rx1 expression (arrow) by VegTMO is not altered by co-expression of Vg1, whereas the expansion caused by dnVg1 is reversed by co-expression of VegT. (F) The small retinal volumes displayed by Vg1-injected embryos were significantly increased by co-injection of VegTMO (* indicates p < 0.01). The small retinal volumes displayed by VegTMO-injected embryos were not altered by co-injection of dnVg1 (p > 0.05).
Fig. 6. The combination of sox17α and derriere phenocopies the VegT effect on the D1.1 lineage. (A) The retinas (r) in sox17α and Xnr1 mRNA injected embryos are normal in size, whereas derriere dramatically reduced both retinas. However, D1.1 progeny (green) were not located within the retina in sox17α, derriere or Xnr1 injected embryos. Co-expression of notch1 reversed the derriere phenotype, resulting in large retinas populated by abundant D1.1 progeny (green), but did not alter the Xnr1 phenotype. The expression of a dominant-negative derriere construct (Cm-derriere) resulted in a larger retina populated by large numbers of D1.1 progeny. (B) The mean volume of retinas in embryos injected with mRNAs for sox17α, derriere (Der), derriere plus Notch1 (Der/N), dominant-negative derriere (Cm-D), Xnr1 and Xnr1 plus notch1 (Xnr1/N). sox17α- and Xnr1-injected embryos do not significantly differ from GFP controls (Fig. 2B), whereas those from derriere embryos are significantly reduced on both sides. Co-expression of Notch1 partially rescues the derriere effect but has no effect on Xnr1 retinas (*, p < 0.01 compared to GFP controls; **, p < 0.05 compared to derriere). Cm-D significantly increased the size of both retinas (*, p < 0.01 compared to GFP controls). (C) Percentage of embryos in which D1.1 progeny populate the retina is dramatically reduced in embryos injected with sox17α, derriere (Der) or Xnr1 mRNAs. The derriere phenotype is partially rescued by co-expression of notch1 (Der/N), whereas the Xnr1 phenotype is not (Xnr1/N). All Cm-D expressing embryos have D1.1 progeny in the retinas, identical to GFP controls (Fig. 2C). (D) Domains of pan-neural plate (sox3, notch1), retinal (rx1), mesodermal (Xbra), and endodermal (sox17α, edd) genes after injection of one D1.1 blastomere with constructs listed on the left. The injected side of the embryo is on the right and the uninjected side is on the left. The sites of effects are indicated either by arrows, or in the neural plate by white bars indicating the width of the expression domains. Expression of sox17α does not affect neural/retinal genes, but inhibits Xbra and expands edd, consistent with its role in converting cells to an endodermal fate. Expression of derriere represses neural and retinal genes, and these effects are rescued by notch1. Cm-Derriere expanded neural and retinal markers and repressed Xbra. Xnr1 either represses (sox3, top rx1 panel) or expands (notch1; bottom rx1 panel) neural/retinal genes, and endo-mesoderm markers are dorsally expanded. No Xnr1 phenotype is rescued by notch1. (E) The expansion of neural (sox3, notch1) and retinal (rx1) expression domains by injection of VegTMO (Fig. 2C) is reversed by co-injection of derriere. Reduction of these markers by VegT (Fig. 2B) is reversed by cm-derriere (see also Table 1).
Fig. 7. In order to convert the V2.1.1 lineage to a retinal fate endo-mesodermal factors must be blocked in combination with suppression of BMP and Wnt signaling. (A) Expression domains of mesodermal (Xbra) and endodermal (sox17α, edd) genes are reduced by VegTMO injection into the vegetal pole, whereas controls (β-gal, cMO, cVegTMO) have no effects. (B) The extent to which the hindgut (g) is populated by V2.1.1 progeny (green) is strikingly reduced in VegTMO embryos (*) compared to controls (GFP). a, archenteron; s, somite. (C) Ectopic expression of rx1 (blue, arrows) in the vegetal pole was monitored by in situ hybridization after the V2.1.1 blastomere was injected with the indicated constructs. Red cells indicate the V2.1.1 progeny expressing those constructs. Reduction of VegT alone (VegTMO) or in combination with Vg1 (VegTMO/dnVg1) was not sufficient to induce ectopic rx1 expression. The long form of Cerberus (Cer-L), which can inhibit BMP, Wnt and Nodal signaling, was effective whereas the short version of Cerberus (Cer-S), which can inhibit only Nodal signaling, was not. Although reduction of both BMP signaling (by expression of noggin [Nog] and a dominant-negative BMP receptor [tBR]) and Wnt signaling (by expression of a dominant-negative Wnt8 construct [dnWnt]) causes ectopic rx1 expression, the cells expressing rx1 are not derived from the V2.1.1 clone (red cells), demonstrating an indirect consequence of the induction of a secondary head (as reported in Moore and Moody, 1999). However, combining the reduction of VegT or VegT plus Vg1 with the inhibition of BMP and Wnt signaling caused the V2.1.1 clone to ectopically express rx1, equivalent to the Cer-L phenotype.
Fig. 3. VegT and Vg1 alter cell fates at gastrulation stages and these changes affect later neural patterning. (A) The expression domains of markers of the germ layers (top labels) during gastrulation after injection of one D1.1 blastomere with mRNAs indicated on the left. Early neural ectoderm is identified by foxD5 and otx2, non-neural ectoderm by keratin, mesoderm by Xbra and endoderm by sox17α and edd. Red cells indicate the D1.1 progeny expressing the injected mRNA, and arrows indicate regions of gene repression or ectopic expression. Frequencies of phenotypes are presented in Table 1. (B) The expression domains of pan-neural (sox3, notch1), eye field (rx1), forebrain (otx2), midbrain (en2) and hindbrain (krox20) genes during neural plate stages. White bars indicate the width of the expression domains on the injected (right) versus uninjected (left) side of the neural plate. Arrows are as above. Frequencies of phenotypes are presented in Table 1.
Agius,
Endodermal Nodal-related signals and mesoderm induction in Xenopus.
2000, Pubmed,
Xenbase
Agius,
Endodermal Nodal-related signals and mesoderm induction in Xenopus.
2000,
Pubmed
,
Xenbase
Ahmed,
Early endodermal expression of the Xenopus Endodermin gene is driven by regulatory sequences containing essential Sox protein-binding elements.
2004,
Pubmed
,
Xenbase
Blitz,
Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle.
1995,
Pubmed
,
Xenbase
Bradley,
The structure and expression of the Xenopus Krox-20 gene: conserved and divergent patterns of expression in rhombomeres and neural crest.
1993,
Pubmed
,
Xenbase
Casey,
Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development.
1999,
Pubmed
,
Xenbase
Chang,
A post-mid-blastula transition requirement for TGFbeta signaling in early endodermal specification.
2000,
Pubmed
,
Xenbase
Chiba,
Notch signaling in stem cell systems.
2006,
Pubmed
Chow,
Pax6 induces ectopic eyes in a vertebrate.
1999,
Pubmed
,
Xenbase
Clements,
VegT induces endoderm by a self-limiting mechanism and by changing the competence of cells to respond to TGF-beta signals.
2003,
Pubmed
,
Xenbase
Clements,
Mode of action of VegT in mesoderm and endoderm formation.
1999,
Pubmed
,
Xenbase
Clements,
Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development.
2003,
Pubmed
,
Xenbase
Coffman,
Xotch, the Xenopus homolog of Drosophila notch.
1990,
Pubmed
,
Xenbase
Coffman,
Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos.
1993,
Pubmed
,
Xenbase
Eimon,
Effects of heterodimerization and proteolytic processing on Derrière and Nodal activity: implications for mesoderm induction in Xenopus.
2002,
Pubmed
,
Xenbase
Engleka,
VegT activation of Sox17 at the midblastula transition alters the response to nodal signals in the vegetal endoderm domain.
2001,
Pubmed
,
Xenbase
Glinka,
Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus.
1997,
Pubmed
,
Xenbase
Graff,
Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo.
1994,
Pubmed
,
Xenbase
Green,
Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment.
2002,
Pubmed
,
Xenbase
Hanafusa,
The TGF-beta family member derrière is involved in regulation of the establishment of left-right asymmetry.
2000,
Pubmed
,
Xenbase
Hartley,
Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation.
2001,
Pubmed
,
Xenbase
Hatakeyama,
Retinal cell fate determination and bHLH factors.
2004,
Pubmed
Hemmati-Brivanlou,
Cephalic expression and molecular characterization of Xenopus En-2.
1991,
Pubmed
,
Xenbase
Henry,
Mixer, a homeobox gene required for endoderm development.
1998,
Pubmed
,
Xenbase
Hoppler,
Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos.
1996,
Pubmed
,
Xenbase
Horb,
A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation.
1997,
Pubmed
,
Xenbase
Huang,
The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones.
1993,
Pubmed
,
Xenbase
Hudson,
Xsox17alpha and -beta mediate endoderm formation in Xenopus.
1997,
Pubmed
,
Xenbase
Jacobson,
Origin of the retina from both sides of the embryonic brain: a contribution to the problem of crossing at the optic chiasma.
1978,
Pubmed
,
Xenbase
Jonas,
Transcriptional regulation of a Xenopus embryonic epidermal keratin gene.
1989,
Pubmed
,
Xenbase
Joseph,
Mutant Vg1 ligands disrupt endoderm and mesoderm formation in Xenopus embryos.
1998,
Pubmed
,
Xenbase
Kavka,
Tales of tails: Brachyury and the T-box genes.
1997,
Pubmed
,
Xenbase
Kenyon,
Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate.
2001,
Pubmed
,
Xenbase
Kessler,
Induction of dorsal mesoderm by soluble, mature Vg1 protein.
1995,
Pubmed
,
Xenbase
Kikuchi,
Notch signaling can regulate endoderm formation in zebrafish.
2004,
Pubmed
,
Xenbase
Kimelman,
Vertebrate mesendoderm induction and patterning.
2000,
Pubmed
,
Xenbase
Kofron,
Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors.
1999,
Pubmed
,
Xenbase
Kumar,
EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification.
2001,
Pubmed
Loose,
A genetic regulatory network for Xenopus mesendoderm formation.
2004,
Pubmed
,
Xenbase
Lustig,
Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation.
1996,
Pubmed
,
Xenbase
Marquardt,
Transcriptional control of neuronal diversification in the retina.
2003,
Pubmed
Mathers,
The Rx homeobox gene is essential for vertebrate eye development.
1997,
Pubmed
,
Xenbase
Mead,
Cloning of Mix-related homeodomain proteins using fast retrieval of gel shift activities, (FROGS), a technique for the isolation of DNA-binding proteins.
1998,
Pubmed
,
Xenbase
Moody,
Fates of the blastomeres of the 16-cell stage Xenopus embryo.
1987,
Pubmed
,
Xenbase
Moody,
Cell lineage analysis in Xenopus embryos.
2000,
Pubmed
,
Xenbase
Moody,
Fates of the blastomeres of the 32-cell-stage Xenopus embryo.
1987,
Pubmed
,
Xenbase
Moore,
Animal-vegetal asymmetries influence the earliest steps in retina fate commitment in Xenopus.
1999,
Pubmed
,
Xenbase
Onuma,
Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies.
2002,
Pubmed
,
Xenbase
Osada,
Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis.
1999,
Pubmed
,
Xenbase
Penzel,
Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis.
1997,
Pubmed
,
Xenbase
Piccolo,
The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals.
1999,
Pubmed
,
Xenbase
Reissmann,
The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development.
2001,
Pubmed
,
Xenbase
Rex,
Multiple interactions between maternally-activated signalling pathways control Xenopus nodal-related genes.
2002,
Pubmed
,
Xenbase
Sasai,
Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps.
1996,
Pubmed
,
Xenbase
Sinner,
Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes.
2004,
Pubmed
,
Xenbase
Smith,
Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos.
1992,
Pubmed
,
Xenbase
Smith,
Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction.
1991,
Pubmed
,
Xenbase
Stennard,
The Xenopus T-box gene, Antipodean, encodes a vegetally localised maternal mRNA and can trigger mesoderm formation.
1996,
Pubmed
,
Xenbase
Sullivan,
foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain.
2001,
Pubmed
,
Xenbase
Sun,
derrière: a TGF-beta family member required for posterior development in Xenopus.
1999,
Pubmed
,
Xenbase
Tada,
Bix1, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm.
1998,
Pubmed
,
Xenbase
Takahashi,
Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center.
2000,
Pubmed
,
Xenbase
Taverner,
Microarray-based identification of VegT targets in Xenopus.
2005,
Pubmed
,
Xenbase
Weber,
A role for GATA5 in Xenopus endoderm specification.
2000,
Pubmed
,
Xenbase
White,
Direct and indirect regulation of derrière, a Xenopus mesoderm-inducing factor, by VegT.
2002,
Pubmed
,
Xenbase
Xanthos,
Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis.
2001,
Pubmed
,
Xenbase
Yasuo,
A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos.
1999,
Pubmed
,
Xenbase
Zaghloul,
Step-wise specification of retinal stem cells during normal embryogenesis.
2005,
Pubmed
Zhang,
Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning.
1996,
Pubmed
,
Xenbase
Zhang,
SOX7 is an immediate-early target of VegT and regulates Nodal-related gene expression in Xenopus.
2005,
Pubmed
,
Xenbase
Zhang,
The role of maternal VegT in establishing the primary germ layers in Xenopus embryos.
1998,
Pubmed
,
Xenbase
Zhang,
Repression of nodal expression by maternal B1-type SOXs regulates germ layer formation in Xenopus and zebrafish.
2004,
Pubmed
,
Xenbase