Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-3631
Biophys J 2004 May 01;865:2871-82. doi: 10.1016/S0006-3495(04)74339-8.
Show Gene links Show Anatomy links

Functional effects of auxiliary beta4-subunit on rat large-conductance Ca(2+)-activated K(+) channel.

Ha TS , Heo MS , Park CS .


???displayArticle.abstract???
Large-conductance calcium-activated potassium (BK(Ca)) channels are composed of the pore-forming alpha-subunit and the auxiliary beta-subunits. The beta4-subunit is dominantly expressed in the mammalian central nervous system. To understand the physiological roles of the beta4-subunit on the BK(Ca) channel alpha-subunit (Slo), we isolated a full-length complementary DNA of rat beta4-subunit (rbeta4), expressed heterolgously in Xenopus oocytes, and investigated the detailed functional effects using electrophysiological means. When expressed together with rat Slo (rSlo), rbeta4 profoundly altered the gating characteristics of the Slo channel. At a given concentration of intracellular Ca(2+), rSlo/rbeta4 channels were more sensitive to transmembrane voltage changes. The activation and deactivation rates of macroscopic currents were decreased in a Ca(2+)-dependent manner. The channel activation by Ca(2+) became more cooperative by the coexpression of rbeta4. Single-channel recordings showed that the increased Hill coefficient for Ca(2+) was due to the changes in the open probability of the rSlo/rbeta4 channel. Single BK(Ca) channels composed of rSlo and rbeta4 also exhibited slower kinetics for steady-state gating compared with rSlo channels. Dwell times of both open and closed events were significantly increased. Because BK(Ca) channels are known to modulate neuroexcitability and the expression of the beta4-subunit is highly concentrated in certain subregions of brain, the electrophysiological properties of individual neurons should be affected profoundly by the expression of this second subunit.

???displayArticle.pubmedLink??? 15111404
???displayArticle.pmcLink??? PMC1304156
???displayArticle.link??? Biophys J


Species referenced: Xenopus
Genes referenced: kcnma1

References [+] :
Adelman, Calcium-activated potassium channels expressed from cloned complementary DNAs. 1992, Pubmed, Xenbase