Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-44181
Int J Biochem Cell Biol 2012 Jan 01;441:53-64. doi: 10.1016/j.biocel.2011.09.003.
Show Gene links Show Anatomy links

Proteomics reveals a switch in CDK1-associated proteins upon M-phase exit during the Xenopus laevis oocyte to embryo transition.

Marteil G , Gagné JP , Borsuk E , Richard-Parpaillon L , Poirier GG , Kubiak JZ .


???displayArticle.abstract???
Cyclin-dependent kinase 1 (CDK1) is a major M-phase kinase which requires the binding to a regulatory protein, Cyclin B, to be active. CDK1/Cyclin B complex is called M-phase promoting factor (MPF) for its key role in controlling both meiotic and mitotic M-phase of the cell cycle. CDK1 inactivation is necessary for oocyte activation and initiation of embryo development. This complex process requires both Cyclin B polyubiquitination and proteosomal degradation via the ubiquitin-conjugation pathway, followed by the dephosphorylation of the monomeric CDK1 on Thr161. Previous proteomic analyses revealed a number of CDK1-associated proteins in human HeLa cells. It is, however, unknown whether specific partners are involved in CDK1 inactivation upon M-phase exit. To better understand CDK1 regulation during MII-arrest and oocyte activation, we immunoprecipitated (IPed) CDK1 together with its associated proteins from M-phase-arrested and M-phase-exiting Xenopus laevis oocytes. A mass spectrometry (MS) analysis revealed a number of new putative CDK1 partners. Most importantly, the composition of the CDK1-associated complex changed rapidly during M-phase exit. Additionally, an analysis of CDK1 complexes precipitated with beads covered with p9 protein, a fission yeast suc1 homologue well known for its high affinity for CDKs, was performed to identify the most abundant proteins associated with CDK1. The screen was auto-validated by identification of: (i) two forms of CDK1: Cdc2A and B, (ii) a set of Cyclins B with clearly diminishing number of peptides identified upon M-phase exit, (iii) a number of known CDK1 substrates (e.g. peroxiredoxine) and partners (e.g. HSPA8, a member of the HSP70 family) both in IP and in p9 precipitated pellets. In IP samples we also identified chaperones, which can modulate CDK1 three-dimensional structure, as well as calcineurin, a protein necessary for successful oocyte activation. These results shed a new light on CDK1 regulation via a dynamic change in the composition of the protein complex upon M-phase exit and the oocyte to embryo transition.

???displayArticle.pubmedLink??? 21959252
???displayArticle.link??? Int J Biochem Cell Biol


Species referenced: Xenopus laevis
Genes referenced: cdk1 hsp70 hspa1l hspa8 ppp3ca