Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-44997
J Physiol 2012 May 15;59010:2519-28. doi: 10.1113/jphysiol.2012.230201.
Show Gene links Show Anatomy links

Riluzole blocks human muscle acetylcholine receptors.

Deflorio C , Palma E , Conti L , Roseti C , Manteca A , Giacomelli E , Catalano M , Limatola C , Inghilleri M , Grassi F .


???displayArticle.abstract???
Riluzole, the only drug available against amyotrophic lateral sclerosis (ALS), has recently been shown to block muscle ACh receptors (AChRs), raising concerns about possible negative side-effects on neuromuscular transmission in treated patients. In this work we studied riluzole's impact on the function of muscle AChRs in vitro and on neuromuscular transmission in ALS patients, using electrophysiological techniques. Human recombinant AChRs composed of α(1)β(1)δ subunits plus the γ or ε subunit (γ- or ε-AChR) were expressed in HEK cells or Xenopus oocytes. In both preparations, riluzole at 0.5 μm, a clinically relevant concentration, reversibly reduced the amplitude and accelerated the decay of ACh-evoked current if applied before coapplication with ACh. The action on γ-AChRs was more potent and faster than on ε-AChRs. In HEK outside-out patches, riluzole-induced block of macroscopic ACh-evoked current gradually developed during the initial milliseconds of ACh presence. Single channel recordings in HEK cells and in human myotubes from ALS patients showed that riluzole prolongs channel closed time, but has no effect on channel conductance and open duration. Finally, compound muscle action potentials (CMAPs) evoked by nerve stimulation in ALS patients remained unaltered after a 1 week suspension of riluzole treatment. These data indicate that riluzole, while apparently safe with regard to synaptic transmission, may affect the function of AChRs expressed in denervated muscle fibres of ALS patients, with biological consequences that remain to be investigated.

???displayArticle.pubmedLink??? 22431338
???displayArticle.pmcLink??? PMC3424768
???displayArticle.link??? J Physiol


Species referenced: Xenopus laevis
Genes referenced: sod1

References [+] :
Bandi, Autocrine activation of nicotinic acetylcholine receptors contributes to Ca2+ spikes in mouse myotubes during myogenesis. 2005, Pubmed