XB-ART-4566
J Comp Neurol
2003 Nov 17;4663:389-408. doi: 10.1002/cne.10887.
Show Gene links
Show Anatomy links
Hodological characterization of the medial amygdala in anuran amphibians.
???displayArticle.abstract???
Early studies in anuran amphibians defined the amygdala as a single unit that only later could be subdivided into medial and lateral parts with the achievement of sensitive immunohistochemical and tracing techniques. However, the terminology used was often misleading when comparing with "homologous" amygdaloid nuclei in amniotes. Recently, the basal telencephalon of anurans has been demonstrated to be more complex than previously thought, and distinct amygdaloid nuclei were proposed on the basis of immunohistochemistry. Moreover, developmental data are increasing that support this notion. In the present study, we analyzed the patterns of afferent and efferent connections of the medial amygdala (MeA; formerly amygdala pars lateralis), considered as the main target of the vomeronasal information from the accessory olfactory bulb, as in other vertebrates. By means of axonal transport of dextran amines, the afferent and efferent connections of the MeA were traced in Rana perezi and Xenopus laevis under in vivo and in vitro conditions. Largely similar results were found in both species. The results showed abundant intratelencephalic and extratelencephalic connections that were readily comparable to those of other tetrapods. Most of these connections were reciprocal and, in particular, the strong relation of the MeA with the hypothalamus, via the stria terminalis, was demonstrated. Immunohistochemical techniques showed staining patterns that revealed abundant peptidergic afferents to the MeA, as well as minor inputs containing other neurotransmitters such as catecholamines. Double-labeling experiments demonstrated that the peptidergic fibers that reach the MeA originate in the ventral hypothalamus, whereas the catecholaminergic innervation of the MeA arises in the caudal extent of the posterior tubercle. Taken together, the results about connectivity in our study support the comparison of the MeA in anurans with its counterparts (and similarly named) amygdaloid nuclei in amniotes. Most of the hodological features of the medial amygdala seem to be shared by those tetrapods with well-developed vomeronasal systems.
???displayArticle.pubmedLink??? 14556296
???displayArticle.link??? J Comp Neurol