Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
J Neurosci
2014 Feb 05;346:2155-9. doi: 10.1523/JNEUROSCI.4307-13.2014.
Show Gene links
Show Anatomy links
Opposing effects of the anesthetic propofol at pentameric ligand-gated ion channels mediated by a common site.
Lynagh T
,
Laube B
.
???displayArticle.abstract???
Propofol is an intravenous general anesthetic that alters neuronal excitability by modulating agonist responses of pentameric ligand-gated ion channels (pLGICs). Evidence suggests that propofol enhancement of anion-selective pLGICs is mediated by a binding site between adjacent subunits, whereas propofol inhibition of cation-selective pLGICs occurs via a binding site contained within helices M1-M4 of individual subunits. We considered this idea by testing propofol modulation of homomeric human glycine receptors (GlyRs) and nematode glutamate-gated chloride channels (GluCls) recombinantly expressed in Xenopus laevis oocytes with electrophysiology. The Haemonchus contortus AVR-14B GluCl was inhibited by propofol with an IC50 value of 252 ± 48 μM, providing the first example of propofol inhibition of an anion-selective pLGIC. Remarkably, inhibition was converted to enhancement by a single I18'S substitution in the channel-forming M2 helix (EC50 = 979 ± 88 μM). When a previously identified site between adjacent subunits was disrupted by the M3 G329I substitution, both propofol inhibition and enhancement of GluCls were severely impaired (IC50 and EC50 values could not be calculated). Similarly, when the equivalent positions were examined in GlyRs, the M2 S18'I substitution significantly altered the maximum level of enhancement by propofol, and the M3 A288I substitution abolished propofol enhancement. These data are not consistent with separate binding sites for the opposing effects of propofol. Instead, these data suggest that propofol enhancement and inhibition are mediated by binding to a single site in anion-selective pLGICs, and the modulatory effect on channel gating depends on the M2 18' residue.
Ahrens,
A transmembrane residue influences the interaction of propofol with the strychnine-sensitive glycine alpha1 and alpha1beta receptor.
2008, Pubmed
Ahrens,
A transmembrane residue influences the interaction of propofol with the strychnine-sensitive glycine alpha1 and alpha1beta receptor.
2008,
Pubmed
Arnold,
The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling.
2006,
Pubmed
Bali,
Defining the propofol binding site location on the GABAA receptor.
2004,
Pubmed
,
Xenbase
Benkert,
QMEAN: A comprehensive scoring function for model quality assessment.
2008,
Pubmed
Cully,
Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans.
1994,
Pubmed
,
Xenbase
Flood,
Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected.
1997,
Pubmed
,
Xenbase
Ghosh,
Propofol binding to the resting state of the gloeobacter violaceus ligand-gated ion channel (GLIC) induces structural changes in the inter- and intrasubunit transmembrane domain (TMD) cavities.
2013,
Pubmed
,
Xenbase
Goujon,
A new bioinformatics analysis tools framework at EMBL-EBI.
2010,
Pubmed
Haeger,
An intramembrane aromatic network determines pentameric assembly of Cys-loop receptors.
2010,
Pubmed
Hibbs,
Principles of activation and permeation in an anion-selective Cys-loop receptor.
2011,
Pubmed
Jayakar,
Identification of propofol binding sites in a nicotinic acetylcholine receptor with a photoreactive propofol analog.
2013,
Pubmed
Krasowski,
Propofol and other intravenous anesthetics have sites of action on the gamma-aminobutyric acid type A receptor distinct from that for isoflurane.
1998,
Pubmed
Krasowski,
Methionine 286 in transmembrane domain 3 of the GABAA receptor beta subunit controls a binding cavity for propofol and other alkylphenol general anesthetics.
2001,
Pubmed
Li,
Numerous classes of general anesthetics inhibit etomidate binding to gamma-aminobutyric acid type A (GABAA) receptors.
2010,
Pubmed
Lynagh,
A glycine residue essential for high ivermectin sensitivity in Cys-loop ion channel receptors.
2010,
Pubmed
Lynagh,
Molecular determinants of ivermectin sensitivity at the glycine receptor chloride channel.
2011,
Pubmed
McCavera,
An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus.
2009,
Pubmed
,
Xenbase
Murail,
Microsecond simulations indicate that ethanol binds between subunits and could stabilize an open-state model of a glycine receptor.
2011,
Pubmed
Nguyen,
Behavior and cellular evidence for propofol-induced hypnosis involving brain glycine receptors.
2009,
Pubmed
Nury,
X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel.
2011,
Pubmed
Orser,
Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons.
1994,
Pubmed
O'Shea,
Propofol restores the function of "hyperekplexic" mutant glycine receptors in Xenopus oocytes and mice.
2004,
Pubmed
,
Xenbase
Rodrigues,
KoBaMIN: a knowledge-based minimization web server for protein structure refinement.
2012,
Pubmed
Rüsch,
Inhibition of human 5-HT(3A) and 5-HT(3AB) receptors by etomidate, propofol and pentobarbital.
2007,
Pubmed
,
Xenbase
Sauguet,
Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel.
2013,
Pubmed
Yip,
A propofol binding site on mammalian GABAA receptors identified by photolabeling.
2013,
Pubmed
Zeller,
Inhibitory ligand-gated ion channels as substrates for general anesthetic actions.
2008,
Pubmed