Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-51186
Mol Biol Cell 2015 Oct 15;2620:3628-40. doi: 10.1091/mbc.E15-04-0233.
Show Gene links Show Anatomy links

Spindle-to-cortex communication in cleaving, polyspermic Xenopus eggs.

Field CM , Groen AC , Nguyen PA , Mitchison TJ .


???displayArticle.abstract???
Mitotic spindles specify cleavage planes in early embryos by communicating their position and orientation to the cell cortex using microtubule asters that grow out from the spindle poles during anaphase. Chromatin also plays a poorly understood role. Polyspermic fertilization provides a natural experiment in which aster pairs from the same spindle (sister asters) have chromatin between them, whereas asters pairs from different spindles (nonsisters) do not. In frogs, only sister aster pairs induce furrows. We found that only sister asters recruited two conserved furrow-inducing signaling complexes, chromosome passenger complex (CPC) and Centralspindlin, to a plane between them. This explains why only sister pairs induce furrows. We then investigated factors that influenced CPC recruitment to microtubule bundles in intact eggs and a cytokinesis extract system. We found that microtubule stabilization, optimal starting distance between asters, and proximity to chromatin all favored CPC recruitment. We propose a model in which proximity to chromatin biases initial CPC recruitment to microtubule bundles between asters from the same spindle. Next a positive feedback between CPC recruitment and microtubule stabilization promotes lateral growth of a plane of CPC-positive microtubule bundles out to the cortex to position the furrow.

???displayArticle.pubmedLink??? 26310438
???displayArticle.pmcLink??? PMC4603933
???displayArticle.link??? Mol Biol Cell


Species referenced: Xenopus
Genes referenced: aurka aurkb


???attribute.lit??? ???displayArticles.show???
References [+] :
Argiros, Centralspindlin and chromosomal passenger complex behavior during normal and Rappaport furrow specification in echinoderm embryos. 2012, Pubmed