Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-51221
Biol Bull 2015 Aug 01;2291:109-19. doi: 10.1086/BBLv229n1p109.
Show Gene links Show Anatomy links

Molecular machinery for vasotocin-dependent transepithelial water movement in amphibians: aquaporins and evolution.

Suzuki M , Shibata Y , Ogushi Y , Okada R .


???displayArticle.abstract???
Amphibians represent the first vertebrates to adapt to terrestrial environments, and are successfully distributed around the world. The ventral skin, kidney, and urinary bladder are important osmoregulatory organs for adult anuran amphibians. Water channel proteins, called aquaporins (AQPs), play key roles in transepithelial water absorption/reabsorption in these organs. At least 43 types of AQPs were identified in anurans; a recent phylogenetic analysis categorized anuran AQPs among 16 classes (AQP0-14, 16). Anuran-specific AQPa2 was assigned to AQP6, then was further subdivided into the ventral skin-type (AQP6vs; AQPa2S), whose expression is confined to the ventral skin, and the urinary bladder-type (AQP6ub; AQPa2U), which is basically expressed in the urinary bladder. For the osmoregulatory organs, AQP3 is constitutively located in the basolateral plasma membrane of tight-junctioned epithelial cells. AQP6vs, AQP2 and/or AQP6ub are also expressed in these epithelial cells and are translocated to the apical membrane in response to arginine vasotocin, thereby regulating water absorption/reabsorption. It was suggested recently that two subtypes of AQP6vs contribute to cutaneous water absorption in Ranid species. In addition, AQP5 (AQP5a) and AQP5L (AQP5b) were identified from Xenopus tropicalis Gray, 1864, and AQP5 was localized to the apical membrane of luminal epithelial cells of the urinary bladder in dehydrated Xenopus. This finding suggested that AQP5 may be involved in water reabsorption from this organ under dehydration. Based on the hitherto reported information, we propose models for the evolution of water-absorbing/reabsorbing mechanisms in anuran osmoregulatory organs in association with AQPs.

???displayArticle.pubmedLink??? 26338873
???displayArticle.link??? Biol Bull


Species referenced: Xenopus tropicalis
Genes referenced: aqp2 aqp3 aqp5 avp