XB-ART-51686
Cell Physiol Biochem
2015 Jan 01;376:2476-85. doi: 10.1159/000438600.
Show Gene links
Show Anatomy links
Regulation of Voltage Gated K+ Channel KCNE1/KCNQ1 by the Janus Kinase JAK3.
???displayArticle.abstract???
BACKGROUND/AIMS: Janus kinase 3 (JAK3), a kinase mainly expressed in hematopoietic cells, has been shown to down-regulate the Na+/K+ ATPase and participate in the regulation of several ion channels and carriers. Channels expressed in thymus and regulating the abundance of T lymphocytes include the voltage gated K+ channel KCNE1/KCNQ1. The present study explored whether JAK3 contributes to the regulation of KCNE1/KCNQ1. METHODS: cRNA encoding KCNE1/KCNQ1 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type JAK3, constitutively active A568VJAK3, or inactive K851AJAK3. Voltage gated K+ channel activity was measured utilizing two electrode voltage clamp. RESULTS: KCNE1/KCNQ1 activity was significantly increased by wild-type JAK3 and A568VJAK3, but not by K851AJAK3. The difference between oocytes expressing KCNE1/KCNQ1 alone and oocytes expressing KCNE1/KCNQ1 with A568VJAK3 was virtually abrogated by JAK3 inhibitor WHI-P154 (22 µM) but not by inhibition of transcription with actinomycin D (50 nM). Inhibition of KCNE1/KCNQ1 protein insertion into the cell membrane by brefeldin A (5 µM) resulted in a decline of the voltage gated current, which was similar in the absence and presence of A568VJAK3, suggesting that A568VJAK3 did not accelerate KCNE1/KCNQ1 protein retrieval from the cell membrane. CONCLUSION: JAK3 contributes to the regulation of membrane KCNE1/KCNQ1 activity, an effect sensitive to JAK3 inhibitor WHI-P154.
???displayArticle.pubmedLink??? 26666518
???displayArticle.link??? Cell Physiol Biochem
Species referenced: Xenopus laevis
Genes referenced: jak3 kcne1 kcnq1