XB-ART-51775
Cell Physiol Biochem
2016 Jan 01;381:359-67. doi: 10.1159/000438636.
Show Gene links
Show Anatomy links
SGK3 Sensitivity of Voltage Gated K+ Channel Kv1.5 (KCNA5).
???displayArticle.abstract???
BACKGROUND: The serum & glucocorticoid inducible kinase isoform SGK3 is a powerful regulator of several transporters, ion channels and the Na+/K+ ATPase. Targets of SGK3 include the ubiquitin ligase Nedd4-2, which is in turn a known regulator of the voltage gated K+ channel Kv1.5 (KCNA5). The present study thus explored whether SGK3 modifies the activity of the voltage gated K+ channel KCNA5, which participates in the regulation of diverse functions including atrial cardiac action potential, activity of vascular smooth muscle cells, insulin release and tumour cell proliferation. METHODS: cRNA encoding KCNA5 was injected into Xenopus oocytes with and without additional injection of cRNA encoding wild-type SGK3, constitutively active S419DSGK3, inactive K191NSGK3 and/or wild type Nedd4-2. Voltage gated K+ channel activity was quantified utilizing dual electrode voltage clamp. RESULTS: Voltage gated current in KCNA5 expressing Xenopus oocytes was significantly enhanced by wild-type SGK3 and S419DSGK3, but not by K191NSGK3. SGK3 was effective in the presence of ouabain (1 mM) and thus did not require Na+/K+ ATPase activity. Coexpression of Nedd4-2 decreased the voltage gated current in KCNA5 expressing Xenopus oocytes, an effect largely reversed by additional coexpression of SGK3. CONCLUSION: SGK3 is a positive regulator of KCNA5, which is at least partially effective by abrogating the effect of Nedd4-2.
???displayArticle.pubmedLink??? 26824455
???displayArticle.link??? Cell Physiol Biochem
Species referenced: Xenopus
Genes referenced: ins kcna5 nedd4 sgk3