XB-ART-52046
Cell Physiol Biochem
2016 Jan 01;384:1652-62. doi: 10.1159/000443105.
Show Gene links
Show Anatomy links
OSR1 and SPAK Sensitivity of Large-Conductance Ca2+ Activated K+ Channel.
???displayArticle.abstract???
BACKGROUND/AIMS: The oxidative stress-responsive kinase 1 (OSR1) and the serine/threonine kinases SPAK (SPS1-related proline/alanine-rich kinase) are under the control of WNK (with-no-K [Lys]) kinases. OSR1 and SPAK participate in diverse functions including cell volume regulation and neuronal excitability. Cell volume and neuronal excitation are further modified by the large conductance Ca2+-activated K+ channels (maxi K+ channel or BK channels). An influence of OSR1 and/or SPAK on BK channel activity has, however, never been shown. The present study thus explored whether OSR1 and/or SPAK modify the activity of BK channels. METHODS: cRNA encoding the Ca2+ insensitive BK channel mutant BKM513I+x0394;899-903 was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type OSR1 or wild-type SPAK, constitutively active T185EOSR1, catalytically inactive D164AOSR1, constitutively active T233ESPAK or catalytically inactive D212ASPAK. K+ channel activity was measured utilizing dual electrode voltage clamp. RESULTS: BK channel activity in BKM513I+x0394;899-903 expressing oocytes was significantly decreased by co-expression of OSR1 or SPAK. The effect of wild-type OSR1/SPAK was mimicked by T185EOSR1 and T233ESPAK, but not by D164AOSR1 or D212ASPAK. CONCLUSIONS: OSR1 and SPAK suppress BK channels, an effect possibly contributing to cell volume regulation and neuroexcitability.
???displayArticle.pubmedLink??? 27119824
???displayArticle.link??? Cell Physiol Biochem
Species referenced: Xenopus laevis
Genes referenced: osr1 stk39