Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-54636
Environ Pollut 2018 Jun 01;237:196-204. doi: 10.1016/j.envpol.2018.02.038.
Show Gene links Show Anatomy links

Lifecycle exposure to perchlorate differentially alters morphology, biochemistry, and transcription as well as sperm motility in Silurana tropicalis frogs.

Campbell DEK , Montgomerie RD , Langlois VS .


???displayArticle.abstract???
Perchlorate (ClO4-) contamination has been reported in ground and surface waters across North America. However, few studies have examined the effects of prolonged exposure to this thyroid hormone disrupting chemical, particularly at environmentally relevant concentrations in lower vertebrates, such as amphibians. The aim of this study was to examine the effects of a yearlong chronic exposure to ClO4- in adult male and female Western clawed frogs (Silurana tropicalis). Frogs were spawned and raised from fertilized embryo until sexual maturity in potassium perchlorate (KClO4)-treated water at different concentrations (0, 20, 53, and 107 μg/L). Developmental and reproductive indices - including adult morphology, androgen plasma levels, gonadal thyroid hormone- and sex steroid-related transcript levels, and sperm motility - were evaluated in male and female adult frogs. Female growth (e.g., body mass, snout-vent length, and hind limb length) was significantly reduced following chronic exposure to environmentally relevant concentrations of KClO4 resulting in females with morphometric indices similar to those of control males - indicating potential sex-specific sensitivities to KClO4. Changes to reproductive indices (i.e., plasma androgen levels, gonadal thyroid hormone- and sex steroid-related transcript levels, and sperm motility) were also observed in both sexes and suggest that KClO4 exposure may also have indirect secondary effects on the reproductive axes in male and female adult frogs. These effects were observed at concentrations at or below those reported in surface waters contaminated with ClO4- suggesting that this contaminant may have developmental and reproductive effects post-metamorphosis in natural amphibian populations.

???displayArticle.pubmedLink??? 29482025
???displayArticle.link??? Environ Pollut