|
Figure 1. Response times to the first flexion and ventral root burst of swimming to current pulse trunk skin stimulation. A, Xenopus tadpole with stimulus site marked (*) and frames from a video (stimulus at t = 0 ms). The tadpole (supported by pins in neck region) flexes to unstimulated left side starting at 76 ms (arrowhead) and swims off. B, Distribution of delays to the start of the 1st flexion of swimming. C, Diagram of immobilised tadpole with stimulating and ventral root (vr) recording electrodes. D, E, Motor nerve responses to 0.1 ms pulse to trunk skin (â) to show when swimming started on the right, unstimulated side (red arrowheads). F, Distribution of delays to the first ventral root spikes when swimming started on the unstimulated side. Figures on graphs are median and IQR.
|
|
Figure 2. Firing times in sensory pathway dlc neurons following a trunk skin stimulus. A Diagram to show the location of electrodes and the recorded neuron. B Ten superimposed responses in a dlc. Delays to the EPSP (grey arrowheads) give the sensory RB spike times and dlc spikes are clear (red arrowheads). C Spike time raster plots for RBs (grey blocks) and dlcs (coloured circles: 1st spikes filled, 2nd/3rd spikes open; N = 9 dlcs). D Spike latency plots of RBs and dlcs.
|
|
Figure 3. The tadpole swimming network and role of reticulospinal hdIN neurons. A, Diagram of the touch sensory pathways to the opposite side from the head and trunk skin, and the hindbrain and spinal neurons controlling swimming. Tt trigeminal touch sensory; RB Rohon-Beard touch sensory; dlc dorso-lateral commissural sensory pathway; hexN hindbrain extension; hdIN hindbrain descending; cIN reciprocal inhibitory commissural; aIN recurrent inhibitory ascending; mn motoneurons. Red triangles are glutamatergic excitatory synapses. Blue circles are glycinergic inhibitory synapses. Synapses onto a box connect to all neurons in the box. B, Recording from a right hdIN where activity in the whole swimming network (seen in left ventral root: green, vr) could be initiated by positive current and terminated by negative current into this single neuron. The right hindbrain was transected just caudal to the otic capsules (see Fig. 1C).
|
|
Figure 4. Responses of reticulospinal hdIN neurons to contralateral trunk skin stimulation
A, diagram to show the location of electrodes and the recorded hdIN neuron. B, anatomy of hdIN revealed by neurobiotin filling. C, examples of 4 hdIN responses to trunk skin stimulus. Arrowheads mark 1st spike. D and E, hdIN 1st spike time raster plot and 1st spike delays (n = 80 trials in 13 hdINs).
|
|
Figure 5. Summation of EPSPs to firing threshold in reticulospinal hdINs following a trunk skin stimulus on the opposite side. A, Neurobiotin fill of the neuron in the left caudal hindbrain recorded in B-D. (Box location as in Fig. 4A.) B, Three superimposed responses (from C) to contra-lateral stimuli evoking swimming show the noisy rise of excitation towards spike threshold (spike onsets marked by red arrowheads). C, D, Recordings show variability in EPSP summation in responses to trunk skin stimulation just above C and below D swim threshold (see ventral root vr). Arrowheads mark example EPSPs and responses are offset for clarity. Asterisks mark artifacts due to spikes in another hdIN recording electrode on the other side. E, F, Raster plots of EPSP latencies in response to skin stimuli at t = 0 where each colour is a different hdIN and each row is a different response. E, EPSPs up to the time of the first hdIN spike of swimming (14 hdINs). F, EPSPs to stimuli below swimming threshold (6 hdINs), persist for more than 150 ms after the stimulus. G, EPSP latency distributions for responses in F. H, Slower time scale recordings show long duration of responses below swim threshold. Arrowheads mark example EPSPs. I, The long duration of the excitation is clear from an average of the 5 responses in H. J, K, Raster plots and distributions of EPSP latencies (like F, G) in animals with the midbrain removed.
|
|
Figure 6. Summation of EPSPs to firing threshold in reticulospinal hdINs following a head skin stimulus on the opposite side. A, Diagram to show the location of electrodes. The inset is the hdIN neuron recorded in C, D. B- C, Responses of hdINs to head skin stimulation (at arrow). B, Three superimposed responses from different neurons leading to firing (red arrowheads). Dots show resting potential. C, D. Responses of hdIN in A to stimuli above (C) and below (D) threshold for the hdIN spike and swimming (see top vr traces). (C, D) Arrowheads mark example EPSPs. E, Raster plot of EPSP latencies from 5 hdINs (different colours) over the first 150 ms after the stimulus when swimming did not occur. F, EPSP latency distributions for responses in E. G, Slower time scale recordings of responses below swim threshold show the prolonged responses in another hdIN. H, An average of responses in G.
|
|
Figure 7. Recurrent models of reticulospinal hdIN excitation and recruitment
A, recurrent hexN network excited by single spikes in 30 sensory pathway DLCs with 5 hdINs to monitor output. BâD, responses to 30 DLC spikes. Raster plots show spike times for DLCs (black) and hexNs (colours); stimulus to DLCs at arrow. Lower panels show selected hdIN voltage records. The hexNs produce variable, summating EPSPs in hdINs (black arrowheads). EPSP summation can reach threshold (dashed red line) and lead to hdIN firing (red arrowhead) after variable delays. D, when hexN firing is brief, EPSPs sum but do not reach hdIN firing threshold (all five traces separated for clarity). E, histogram of all hexN firing times in 30 trials of a single network. F, model of a population of 30 hdINs with electrical coupling and feedback glutamate excitation (Hull et al. 2015) excited by hexN spikes at times determined by the hexN recurrent network model. GâI, overlapped voltage records of all 30 hdINs in response to hexN excitation in one trial. G, excitation can sum to threshold so hdINs are recruited to spike rhythmically and almost synchronously. H, in another trial the EPSPs sum but do not reach hdIN firing threshold (some traces separated for clarity). I, without electrical coupling, hdINs fire earlier and then asynchronously. All voltage scales as in B and G.
|
|
Figure 3. The tadpole swimming network and role of reticulospinal hdIN neurons
A, diagram of the touch sensory pathways to the opposite side from the head and trunk skin, and the hindbrain and spinal neurons controlling swimming. Tt, trigeminal touch sensory; RB, RohonâBeard touch sensory; DLC, dorsolateral commissural sensory pathway; hexN, hindbrain extension neurons; hdIN, hindbrain descending interneurons; cIN, reciprocal inhibitory commissural interneurons; aIN, recurrent inhibitory ascending interneurons; mn, motoneurons. Red triangles are glutamatergic excitatory synapses. Blue circles are glycinergic inhibitory synapses. Synapses onto a box connect to all neurons in the box. B, recording from a right hdIN where activity in the whole swimming network (seen in left ventral root (VR): green trace) could be initiated by positive current and terminated by negative current into this single neuron. The right hindbrain was transected just caudal to the otic capsules (see Fig. 1
C).
|