Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-55868
Autophagy 2019 Nov 01;1511:1970-1989. doi: 10.1080/15548627.2019.1596487.
Show Gene links Show Anatomy links

Autophagy in Xenopus laevis rod photoreceptors is independently regulated by phototransduction and misfolded RHOP23H.

Wen RH , Stanar P , Tam B , Moritz OL .


???displayArticle.abstract???
We previously reported autophagic structures in rod photoreceptors expressing a misfolding RHO (rhodopsin) mutant (RHOP23H), suggesting that autophagy may play a role in degrading the mutant RHO and/or be involved in photoreceptor cell death. To further examine autophagy in normal and diseased rods, we generated transgenic Xenopus laevis tadpoles expressing the dually fluorescent autophagy marker mRFP-eGFP-LC3 in rods, which changes from green to yellow and finally red as autophagic structures develop and mature. Using transgenic lines with constitutive and inducible expression, we determined the time-course of autophagy in rod photoreceptors: autophagosomes last for 6 to 8 hours before fusing with lysosomes, and acidified autolysosomes last for about 28 hours before being degraded. Autophagy was diurnally regulated in normal rods, with more autophagic structures generated during periods of light, and this regulation was non-circadian. We also found that more autophagosomes were produced in rods expressing the misfolding RHOP23H mutant. The RHO chromophore absorbs photons to initiate phototransduction, and is consumed in this process; it also promotes RHO folding. To determine whether increased autophagy in light-exposed normal rods is caused by increased RHO misfolding or phototransduction, we used CRISPR/Cas9 to knock out the RPE65 and GNAT1 genes, which are essential for chromophore biosynthesis and phototransduction respectively. Both knockouts suppressed light-induced autophagy, indicating that although light and misfolded rhodopsin can both induce autophagy in rods, light-induced autophagy is not due to misfolding of RHO, but rather due to phototransduction. Abbreviations: CYCS: cytochrome c; bRHOP23H: bovine RHOP23H; Cas9: CRISPR associated protein 9; dpf: days post-fertilization; eGFP: enhanced green fluorescent protein; GNAT1: guanine nucleotide-binding protein G(t) subunit alpha-1 aka rod alpha-transducin; HSPA1A/hsp70: heat shock protein of 70 kilodaltons; LAMP1: lysosomal-associated membrane protein 1; LC3: microtubule-associated protein 1A/1B light chain 3; mRFP: monomeric red fluorescent protein; RHO: rhodopsin; RP: retinitis pigmentosa; RPE65: retinal pigment epithelium-specific 65 kDa protein: sfGFP: superfolding GFP; sgRNA: single guide RNA; WGA: wheat germ agglutinin; RHOp: the Xenopus laevis RHO.2.L promoter.

???displayArticle.pubmedLink??? 30975014
???displayArticle.pmcLink??? PMC6844500
???displayArticle.link??? Autophagy
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: gnat1 lamp1 map1lc3a rho rpe65

References [+] :
Arshavsky, Current understanding of signal amplification in phototransduction. 2014, Pubmed