Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-56798
J Vis Exp 2020 Feb 18;156:. doi: 10.3791/60726.
Show Gene links Show Anatomy links

Fluorescent Calcium Imaging and Subsequent In Situ Hybridization for Neuronal Precursor Characterization in Xenopus laevis.

Ablondi EF , Paudel S , Sehdev M , Marken JP , Halleran AD , Rahman A , Kemper P , Saha MS .


???displayArticle.abstract???
Spontaneous intracellular calcium activity can be observed in a variety of cell types and is proposed to play critical roles in a variety of physiological processes. In particular, appropriate regulation of calcium activity patterns during embryogenesis is necessary for many aspects of vertebrate neural development, including proper neural tube closure, synaptogenesis, and neurotransmitter phenotype specification. While the observation that calcium activity patterns can differ in both frequency and amplitude suggests a compelling mechanism by which these fluxes might transmit encoded signals to downstream effectors and regulate gene expression, existing population-level approaches have lacked the precision necessary to further explore this possibility. Furthermore, these approaches limit studies of the role of cell-cell interactions by precluding the ability to assay the state of neuronal determination in the absence of cell-cell contact. Therefore, we have established an experimental workflow that pairs time-lapse calcium imaging of dissociated neuronal explants with a fluorescence in situ hybridization assay, allowing the unambiguous correlation of calcium activity pattern with molecular phenotype on a single-cell level. We were successfully able to use this approach to distinguish and characterize specific calcium activity patterns associated with differentiating neural cells and neural progenitor cells, respectively; beyond this, however, the experimental framework described in this article could be readily adapted to investigate correlations between any time-series activity profile and expression of a gene or genes of interest.

???displayArticle.pubmedLink??? 32150168
???displayArticle.link??? J Vis Exp