Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-57977
Drug Metab Dispos 2021 May 01;495:353-360. doi: 10.1124/dmd.120.000308.
Show Gene links Show Anatomy links

Identification of Triterpene Acids in Poria cocos Extract as Bile Acid Uptake Transporter Inhibitors.

Cai H , Cheng Y , Zhu Q , Kong D , Chen X , Tamai I , Lu Y .


???displayArticle.abstract???
Literature reports that Poria cocos reduces blood lipid levels; however, the underlying mechanism remains unclear. Blood lipid levels are closely related to the enterohepatic circulation of bile acids, where uptake transporters playing a significant role. P. cocos extract is commonly used in traditional prescriptions and food supplements in China. We investigated the effects of P. cocos and its five triterpene acids on bile acid uptake transporters, including intestinal apical sodium-dependent bile acid transporter (ASBT) and hepatic sodium/taurocholate cotransporting polypeptide (NTCP). Triterpene acids were fingerprinted by high-performance liquid chromatography-TripleTOF and quantified by ultraperformance liquid chromatography/tandem mass spectrometry. The inhibitory effect of P. cocos and its five major representative triterpene acids on ASBT and NTCP was investigated by in vitro assays using Xenopus oocytes expressing ASBT and NTCP. P. cocos extract exhibited significant inhibitory effects with half-maximum inhibition constants of 5.89 µg/ml and 14.6 µg/ml for NTCP and ASBT, respectively. Among five triterpene acids, poricoic acid A, poricoic acid B, and polyporenic acid C significantly inhibited NTCP function. Poricoic acid A, poricoic acid B, and dehydrotumulosic acid significantly inhibited ASBT function. The representative triterpene acid, poricoic acid A, was identified as a competitive inhibitor of NTCP with an inhibitory constant of 63.4 ± 18.7 µM. In conclusion, our results indicate that both P. cocos extract and its major triterpenes are competitive inhibitors of ASBT and NTCP. Accordingly, it was suggested that competitive inhibition of these bile acid transporters is one of the underlying mechanisms for the hypolipidemic effect of P. cocos. SIGNIFICANCE STATEMENT: Poria cocos, a commonly used Chinese herbal medicine and food supplement, demonstrates significantly inhibitory effects on the function of apical sodium-dependent bile acid transporter and sodium/taurocholate cotransporting polypeptide. P. cocos has potential to reduce the blood lipid through inhibition of these uptake transporters in enterohepatic circulation of bile acid.

???displayArticle.pubmedLink??? 33658229
???displayArticle.link??? Drug Metab Dispos


Species referenced: Xenopus laevis
Genes referenced: slc10a1 slc10a2