Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-58252
BMC Ecol Evol 2021 Jun 30;211:134. doi: 10.1186/s12862-021-01864-z.
Show Gene links Show Anatomy links

Independent pseudogenizations and losses of sox15 during amniote diversification following asymmetric ohnolog evolution.

Ogita Y , Tamura K , Mawaribuchi S , Takamatsu N , Ito M .


???displayArticle.abstract???
BACKGROUND: Four ohnologous genes (sox1, sox2, sox3, and sox15) were generated by two rounds of whole-genome duplication in a vertebrate ancestor. In eutherian mammals, Sox1, Sox2, and Sox3 participate in central nervous system (CNS) development. Sox15 has a function in skeletal muscle regeneration and has little functional overlap with the other three ohnologs. In contrast, the frog Xenopus laevis and zebrafish orthologs of sox15 as well as sox1-3 function in CNS development. We previously reported that Sox15 is involved in mouse placental development as neofunctionalization, but is pseudogenized in the marsupial opossum. These findings suggest that sox15 might have evolved with divergent gene fates during vertebrate evolution. However, knowledge concerning sox15 in other vertebrate lineages than therian mammals, anuran amphibians, and teleost fish is scarce. Our purpose in this study was to clarify the fate and molecular evolution of sox15 during vertebrate evolution. RESULTS: We searched for sox15 orthologs in all vertebrate classes from agnathans to mammals by significant sequence similarity and synteny analyses using vertebrate genome databases. Interestingly, sox15 was independently pseudogenized at least twice during diversification of the marsupial mammals. Moreover, we observed independent gene loss of sox15 at least twice during reptile evolution in squamates and crocodile-bird diversification. Codon-based phylogenetic tree and selective analyses revealed an increased dN/dS ratio for sox15 compared to the other three ohnologs during jawed vertebrate evolution. CONCLUSIONS: The findings revealed an asymmetric evolution of sox15 among the four ohnologs during vertebrate evolution, which was supported by the increased dN/dS values in cartilaginous fishes, anuran amphibians, and amniotes. The increased dN/dS value of sox15 may have been caused mainly by relaxed selection. Notably, independent pseudogenizations and losses of sox15 were observed during marsupial and reptile evolution, respectively. Both might have been caused by strong relaxed selection. The drastic gene fates of sox15, including neofunctionalization and pseudogenizations/losses during amniote diversification, might be caused by a release from evolutionary constraints.

???displayArticle.pubmedLink??? 34193037
???displayArticle.pmcLink??? PMC8244163
???displayArticle.link??? BMC Ecol Evol


Species referenced: Xenopus laevis
Genes referenced: lrwd1 sox1 sox15 sox2 sox3


???attribute.lit??? ???displayArticles.show???
References [+] :
Bowles, Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. 2000, Pubmed