Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9130
Anesth Analg 2001 May 01;925:1182-91. doi: 10.1097/00000539-200105000-00020.
Show Gene links Show Anatomy links

Modulation of NMDA receptor function by ketamine and magnesium. Part II: interactions with volatile anesthetics.

Hollmann MW , Liu HT , Hoenemann CW , Liu WH , Durieux ME .


???displayArticle.abstract???
UNLABELLED: Mg2+ and ketamine interact superadditively at N- methyl-D-aspartate (NMDA) receptors, which may explain the clinical efficacy of the combination. Because patients are usually exposed concomitantly to volatile anesthetics, we tested the hypothesis that volatile anesthetics interact with ketamine and/or Mg2+ at recombinantly expressed NMDA receptors. NR1/NR2A or NR1/NR2B receptors were expressed in Xenopus oocytes. We determined the effects of isoflurane, sevoflurane, and desflurane on NMDA receptor signaling, alone and in combination with S(+)-ketamine (4.1 microM on NR1/NR2A, 3.0 microM on NR2/NR2B) and/or Mg2+ (416 microM on NR1/NR2A, 629 microM on NR1/NR2B). Volatile anesthetics inhibited NR1/NR2A and NR1/NR2B glutamate receptor function in a reversible, concentration-dependent, voltage-insensitive and noncompetitive manner (half-maximal inhibitory concentration at NR1/NR2A receptors: 1.30 +/- 0.02 minimum alveolar anesthetic concentration [MAC] for isoflurane, 1.18 +/- 0.03 MAC for desflurane, 1.24 +/- 0.06 MAC for sevoflurane; at NR1/NR2B receptors: 1.33 +/- 0.12 MAC for isoflurane, 1.22 +/- 0.08 MAC for desflurane, and 1.28 +/- 0.08 MAC for sevoflurane). On both NR1/NR2A and NR1/NR2B receptors, 50% inhibitory concentration for volatile anesthetics was reduced approximately 20% by Mg2+, approximately 30% by S(+)-ketamine, and approximately 50% by the compounds in combination. Volatile anesthetic effects on NMDA receptors can be potentiated significantly by Mg2+, S(+)-ketamine, or-most profoundly-both. Therefore, the analgesic effects of ketamine and Mg2+, are likely to be enhanced in the presence of volatile anesthetics. IMPLICATIONS: Clinically relevant concentrations of volatile anesthetics inhibit functioning of N-methyl-D-aspartate receptors expressed recombinantly in Xenopus oocytes. This inhibition is reversible, concentration-dependent and voltage-insensitive, and results from noncompetitive antagonism of glutamate/glycine signaling. In addition, these effects can be potentiated significantly by co-application of either Mg2+, S(+)-ketamine, or--most profoundly--both.

???displayArticle.pubmedLink??? 11323344
???displayArticle.link??? Anesth Analg
???displayArticle.grants??? [+]