Impact of the Xenopus system on the mission of the NIGMS

John Wallingford, PhD - HHMI & University of Texas at Austin Eddy DeRobertis, MD, PhD - HHMI & University of California at Los Angeles Jean Gautier, PhD – Columbia University Yixian Zheng, PhD – HHMI & Carnegie Institution

The NIGMS "supports basic research that increases understanding of life processes and lays the foundation for advances in disease diagnosis, treatment, and prevention" (http://www.nigms.nih.gov/Initiatives/). Experiments in model animals are a cornerstone of such fundamental biomedical research and they play a particularly important role in the mission of the NIGMS.

The frog, *Xenopus*, is a widely used and crucial vertebrate model organism that is unique for its combination of experimental tractability and close evolutionary relationship with humans. *Xenopus* is an essential tool for *in vivo* studies in molecular, cell, and developmental biology of vertebrate animals. However, the enormous breadth of *Xenopus* research stems from the additional fact that cell-free extracts made from *Xenopus* are a premier *in vitro* system for studies of fundamental aspects of cell and molecular biology. Thus, *Xenopus* is the only vertebrate model system that allows for high-throughput *in vivo* analyses of gene function and high-throughput biochemistry. Finally, it should be borne in mind that *Xenopus* oocytes are a leading system for studies of ion transport and channel physiology.

Because of its diverse applications, *Xenopus* research is funded by nearly all Institutes within the NIH. However, the NIGMS remains by far the largest source of funding for *Xenopus* research. In this statement, we provide a summary of the crucial contributions made by *Xenopus* research to the mission of the NIGMS. We start with recent contributions of *Xenopus* to the study of known human disease genes. We follow this with a selection of examples that illustrate the huge impact that recent *Xenopus* research has had on our understanding of fundamental biological processes. Finally, we summarize very briefly the long and rich history which formed the foundation for myriad current advances being made *Xenopus* research to our understanding of the biology underlying human disease.

I. Direct investigation of human disease genes using Xenopus:

The NIGMS funds research that "lays the foundation for advances in disease diagnosis, treatment, and prevention" (<u>http://www.nigms.nih.gov/Initiatives/</u>). Therefore, it is notable that all modes of *Xenopus* research (embryos, cell-free, extracts, and oocytes) are now commonly and widely used in direct study of human disease genes.

<u>Xenopus embryos for in vivo studies of human disease gene function</u>: Xenopus embryos are large and easily manipulated, and moreover, thousands of embryos can be obtained in a single day. It is not surprising, then, that *Xenopus* was the first vertebrate animal for which methods were developed that allowed rapid analysis of gene function using misexpression (by mRNA injection; *Nature*. 1971. 233, 177-82). Indeed, injection of mRNA in *Xenopus* led to the cloning of interferon (*PNAS*. 1975. 72, 4881-4885). Moreover, the use of morpholino-antisense oligonucleotides for gene knockdowns in vertebrates, which is now the state-of-the-art, was first developed by Janet Heasman using *Xenopus* (*Dev. Biol.* 2000. 222, 124-34.).

In recent years these approaches have played in important role in studies of human disease genes. The mechanism of action for several genes mutated in human cystic kidney disorders (e.g. nephronophthisis) have been extensively studied in *Xenopus* embryos, shedding new light on the link between these disorders, ciliogenesis and Wnt signaling (*Hum Mol Genet.* 2008. 17, 3655-62). *Xenopus* embryos have also provided a rapid test bed for validating newly-discovered disease genes. For example, studies in *Xenopus* confirmed and elucidated the role PYCR1 in cutis laxa with progeroid features (*Nat Genet.* 2009. 41, 1016-21).

<u>Transgenic Xenopus for studying transcriptional regulation of human disease</u> <u>genes</u>: Xenopus embryos develop rapidly, and so transgenesis in Xenopus is a rapid and effective method for analyzing genomic regulatory sequences. In a recent study, mutations in the SMAD7 locus were revealed to associate with human colorectal cancer. Interestingly, the mutations lay in conserved, but non-coding sequences, suggesting that these mutations impacted the patterns of SMAD7 transcription. To test this hypothesis, the authors used Xenopus transgenesis, and revealed that this genomic region drove expression of GFP in the hindgut. Moreover, transgenics made with the mutant version of this region displayed substantially less expression in the hindgut (Genome Res. 2009. 19, 987-93.).

<u>Xenopus cell-free extracts for biochemical studies of proteins encoded by human</u> <u>disease genes:</u> A unique advantage of the Xenopus system is that cytosolic extracts contain both soluble cytoplasmic and nuclear proteins (including chromatin proteins). This is in contrast to cellular extracts prepared from somatic cells with already distinct cellular compartments. Xenopus egg extracts have provided innumerable insights into the basic biology of cells with particular impact on cell division and the DNA transactions associated with it.

Studies in *Xenopus* egg extracts have also yielded critical insights into the mechanism of action of human disease genes associated with genetic instability and elevated cancer risk, such as ATM (Ataxia telangiectasia), BRCA1 (Inherited Breast and Ovarian cancer), Nbs1 (Nijmegen Breakage Syndrome), RecQL4 (Rothmund-Thomson Syndrome), c-Myc oncogene and FANC proteins (Fanconi anemia) (*Cell.* 2006, 127, 539-52; *Nat. Cell Biol.* 2007. 9, 1311-18; *Mol. Cell.* 2009. 35, 704-15; *J Biol Chem.* 2009, 284, 25560-8; *Nature.* 2007. 448, 445-51).

<u>Xenopus oocytes for studies of gene expression and channel activity related to</u> <u>human disease:</u> Yet another strength of Xenopus, and another strength that is simply not matched by any other vertebrate model system, is the ability to rapidly and easily assay the activity of channel and transporter proteins using expression in oocytes. This application has also led to important insights into human disease, including studies related to trypanosome transmission (*Nature* 2009. 459, 213-217), Epilepsy with ataxia and sensorineural deafness (*N Engl J Med.* 360, 1960-70), Catastrophic cardiac arrhythmia (Long-QT syndrome; *PNAS* 2009. 106,13082-7) and Megalencephalic leukoencephalopathy (*Hum Mol Genet.* 2008. 17, 3728-39).

II. Investigation of fundamental biological processes using *Xenopus*:

In addition to applied studies directed at the mechanisms of known human disease genes, the NIGMS very broadly supports "basic research that increases understanding of life processes" (<u>http://www.nigms.nih.gov/Initiatives/</u>). It is this area where *Xenopus* has made its most substantive and wide-ranging contributions.

To name only a few areas of study in which *Xenopus* has had a large impact in recent years:

<u>Signal transduction</u>: Xenopus embryos and cell-free extracts are widely used for basic research in signal transduction. In just the last few years, Xenopus embryos have

provided crucial insights into the mechanisms of TGF-® and Wnt signal transduction. For example, *Xenopus* embryos were used to identify the enzymes that control ubiquitination of Smad4 (*Cell.* 2009. 136,123-35), and also to demonstrate direct links between TGF-® superfamily signaling pathways and other important networks, such as the MAP kinase pathway (*Science.* 2007. 315, 840-3) and the Wnt pathway (*Cell.* 2007. 131, 980-993). Moreover, new methods using egg extracts revealed novel, important targets of the Wnt/GSK3 destruction complex (*PNAS.* 2009. 106, 5165-5170).

<u>Cell division</u>: Xenopus egg extracts have allowed the study of many complicated cellular events in a test tube. Because egg cytosol can support successive cycling between mitosis and interphase *in vitro*, it has been critical to diverse studies of cell division. For example, the small GTPase Ran was first found to regulate interphase nuclear transport, but *Xenopus* egg extracts revealed the critical role of Ran GTPase in mitosis independent of its role in interphase nuclear transport (*Nature*. 2006 440, 697-701). Similarly, the cell-free extracts were used to model nuclear envelope assembly from chromatin, revealing the function of RanGTPase in regulating nuclear envelope reassembly after mitosis (*Science* 2006 311, 1887-1893). More recently, using *Xenopus* egg extracts, it was possible to demonstrate the mitosis-specific function of the nuclear lamin B in regulating spindle morphogenesis (*Nat. Cell Biol.* 2009. 11, 247-256) and to identify new proteins that mediate kinetochore attachment to microtubules (*Cell.* 2007. 130, 893-905.

<u>Embryonic development</u>: Xenopus embryos are so widely used in developmental biology that it is impossible to quickly summarize the myriad of important advances made by Xenopus research in recent years. A very short list would include:

- Epigenetics of cell fate specification (Dev. Cell. 2009. 17, 425-434),
- microRNAs in germ layer patterning and eye development (Dev. Cell. 2009. 16, 517-527; Genes & Dev. 2009. 23, 1046-1051),
- Link between Wnt signaling and telomerase (Nature. 2009. 460, 66-72),
- Development of the vasculature (Cell. 2008.135, 1053-64),
- Gut morphogenesis (Genes & Dev. 2008. 22, 3050-3063),
- Contact inhibition and neural crest cell migration (*Nature*. 2008. 146, 957-961). <u>Initiation of DNA replication</u>: Xenopus cell-free extracts also support the

synchronous assembly and the activation of origins of DNA replication. They have been instrumental in characterizing the biochemical function of the pre-replicative complex, including MCM proteins (*Mol. Cell.* 2008. 32, 862-9; *EMBO J.* 2009. 28, 3005-14).

<u>Response to DNA damage:</u> Cell-free extracts have been instrumental to unravel the signaling pathways that are activated in response to DNA double-strand breaks (ATM), replication fork stalling (ATR) or DNA interstrand crosslinks (FA proteins and ATR). Notably, several mechanisms and components of these signal transduction pathways were first identified in *Xenopus* (*Mol Cell.* 2009. 35,704-15; *Cell.* 2008. 134, 969-80; *Genes Dev.* 2007. 21, 898-903).

<u>Apoptosis:</u> Xenopus oocytes provide a tractable model for biochemical studies of apoptosis. Recently, oocytes were used recently to study the biochemical mechanisms of caspase-2 activation; importantly, this mechanism turns out to be conserved in mammals (*Dev Cell.* 2009. 16, 856-66).

<u>Regenerative medicine</u>: In recent years, there has been tremendous interest in developmental biology stoked by the promise of regenerative medicine. *Xenopus* has played a role here as well. For example, it has been found that expression of seven transcription factors in pluripotent *Xenopus* cells rendered those cells able to develop into functional eyes when implanted into *Xenopus* embryos, providing potential insights into the repair of retinal degeneration or damage (*PLoS Biology*. 2009. 7, e1000174.).

In a vastly different study, *Xenopus* embryos was used to study the effects of tissue tension on morphogenesis (*Dev Cell.* 2009. 16, 421-432.), an issue that will be critical for *in vitro* tissue engineering.

<u>Physiology</u>: The directional beating of multi-ciliated cells is essential to development and homeostasis in the central nervous system, the airway, and the oviduct. Interestingly, the multi-ciliated cells of the *Xenopus* epidermis have recently been developed as the first *in vivo* test-bed for live-cell studies of such ciliated tissues, and these studies have provided important insights into the biomechanical and molecular control of directional beating (*Nat Genet.* 2008. 40, 871-9; *Nature.* 2007. 447, 97-101).

III. Use of *Xenopus* for small molecule screens to develop novel therapeutics.

Because huge amounts of material are easily obtained, all modalities of *Xenopus* research are now being used for small-molecule based screens.

<u>Chemical genetics of vascular growth in Xenopus tadpoles</u>: Given the important role of neovascularization in cancer progression, *Xenopus* embryos were recently used to identify new small molecules inhibitors of blood vessel growth. Notably, compounds identified in *Xenopus* were effective in mice (*Blood*. 2009. 114, 1110-22; *Blood*. 2008. 112, 1740-9).

In vivo testing of potential endocrine disruptors in transgenic Xenopus embryos: Endocrine disrupting chemicals released into the environment pose a potential public health risk, but our ability to identify such compounds in vitro vastly outstrips our ability to monitor the in vivo effects of such chemicals. A high-throughput assay for thyroid disruption has recently been developed using transgenic *Xenopus* embryos (*Environ. Sci. Technol.* 2007. 41, 5908-14).

<u>Small molecule screens in Xenopus egg extracts</u>: Egg extracts provide ready analysis of molecular biological processes and can rapidly screened. This approach was used to identify novel inhibitors of proteasome-mediated protein degradation and DNA repair enzymes (*Nat Chem Biol.* 2008. 4, 119-25; *Int. J. Cancer.* 2009. 124, 783-92).

IV. A long history of research laid the foundation for the myriad recent contributions of *Xenopus* to biomedical science.

In addition to its current wide usage in diverse areas of biology, we feel that it is also worth summarizing the some of the landmark discoveries that come to mind when thinking about the contributions of *Xenopus* to the NIH.

1950s

• The discovery that somatic nuclei are totipotent, from which present excitement about nuclear reprogramming and stem cells arises (Gurdon et al., 1958).

1960s

- The discovery that the nucleolar organizer encodes the ribosomal RNA genes (Brown and Gurdon, 1969).
- Selective DNA amplification of rDNA in oogenesis (Brown and Dawid, 1968; Gall, 1968).
- Mitochondrial DNA exists and is inherited from the mother (Dawid, 1966).

- The isolation of the first eukaryotic genes by equilibrium density centrifugation in the form of rRNA and 5S genes (Birnstiel et al., 1968; Brown et al., 1971).
- The first eukaryotic translation system by oocyte mRNA microinjection (Gurdon et al., 1971).
- The first transcription and translation system for cloned genes (Brown and Gurdon, 1977; De Robertis and Mertz, 1977).
- Discovery of MPF, a meiosis maturation promoting factor that provided the key to the elucidation of the cell cycle (Wasserman and Masui, 1976).
- First system for electrophysiological studies on cloned membrane channels and receptors (Kusano et al., 1977).
- Identification of nuclear targeting signal sequences in the mature sequence of nuclear proteins (De Robertis et al., 1978).

1980s

- The isolation of the first eukaryotic transcription factor, TFIIIA (Engelke et al., 1980).
- First in vitro system for nuclear and chromosome assembly (Lohka and Masui, 1983).
- Discovery of the first Hox gene homologue in vertebrates (Carrasco et al., 1984).
- Mesoderm induction is mediated by members of the TGF-beta family of growth factors (Smith, 1987).
- Cell cycle progression is regulated through protein degradation of cyclins via ubiquitination (Murray et al., 1989).

1990s

- Molecular nature of Spemann's organizer: cell-cell signals are regulated by secreted growth factors antagonists such as Noggin, Gremlin, Follistatin, Chordin, Cerberus, Frzb and Dickkopf (reviewed by Harland and Gerhart, 1997).
- Identification of the cell-cell signals that cause induction and patterning of the Central Nervous System (Zimmerman et al., 1996; Piccolo et al., 1996).

These and many other past discoveries would more than justify a re-dedication of the NIGMS's efforts to the accelerate and promote biomedical research using *Xenopus*. But as the document above makes clear, the current, sustained contributions made by this system are such that *Xenopus* should be considered one of the most promising post-genomic systems for research in Cell and Molecular Biology.

Xenopus grants funded by the Institute:

According to NIH RePORTER Search Tool, in the fiscal year of 2011, the National Institute of General Medical Sciences (NIGMS) funded forty-seven grants for projects involving Xenopus. These grants total to \$14,880,910.

2011 Xenopus White Paper - Community Needs:

Executive Summary

Xenopus: An essential vertebrate model system for biomedical research:

Model animals are crucial to advancing biomedical research. Basic studies in vertebrate animals rapidly accelerate our understanding of human health and disease. Among the commonly used model animals, the frog, *Xenopus*, has great impact because of its close evolutionary relationship with mammals. Moreover, the remarkable

experimental repertoire of the *Xenopus* system has made it a cornerstone of neurobiology, physiology, molecular biology, cell biology, and developmental biology.

Current NIH investment in research using Xenopus:

Consistent with its broad utility, the NIH has made a large and continuing investment in *Xenopus* research. Indeed, a search of the NIH rePORT database for R01 or equivalent grants using the search term "*Xenopus*" returned **678 grants for a total of over \$217,000,000** for FY09-10. The NIH has also recently demonstrated its commitment to *Xenopus* community resources by approving \$2.5 million to establish the National *Xenopus* Resource in Woods Hole, MA and a similar amount to maintain and expand Xenbase, the *Xenopus* Community's online database.

Xenopus as a model system for human disease gene function

Given the tremendous power of the *Xenopus* system, the pace of new biological discovery by the *Xenopus* Community is vigorous. Using *Xenopus*, we have significantly improved our understanding of human disease genes and their mechanisms of action, justifying the NIH's investment. For example:

Xenopus embryos are used for *in vivo* analysis of gene expression and function: Congenital Heart Disease – PNAS 2011. 108, 2915-2920
CHARGE Syndrome – Nature 2010. 463, 958-962.
Bardet-Biedl and Meckel-Gruber Syndromes – Science 2010. 329, 1337-1340.
Hereditary hypotrichosis simplex – Nature 2010. 464, 1043-1047.
Hutchison-Gilford Progeria – Dev. Cell 2010. 19, 413-25.
Cutis Iaxa – Nat Genet. 2009. 41, 1016-21.
Colorectal cancer – Genome Res. 2009. 19, 987-93.
Nephronophthisis – Hum Mol Genet. 2008. 17, 3655-62; Nat Genet. 2005. 37, 537-43.

Xenopus egg extracts are used for *in vitro* biochemical studies: **Fanconi Anemia –** *Mol. Cell.* 2009. 35, 704-15; *Science.* 2009, 326, 1698-701. **C-myc oncogene –** *Nature.* 2007. 448, 445-51. **BRCA1 –** *Cell.* 2006. 127, 539-552

 Xenopus oocytes are used to study gene expression and channel activity: Rapid-onset dystonia-parkinsonsim – Nature 2010. 467, 99-102.
 Trypanosome transmission – Nature 2009. 459, 213-217.
 Epilepsy, ataxia, sensorineural deafness – N Engl J Med. 2009. 360, 1960-70.
 Catastrophic cardiac arrhythmia (Long-QT syndrome) – PNAS 2009. 106,13082-7.
 Megalencephalic leukoencephalopathy – Hum Mol Genet. 2008. 17, 3728-39.

Xenopus as a model system for understanding basic biological processes:

Xenopus also plays a crucial role in elucidating the basic cellular and biochemical mechanisms underlying the entire spectrum of human pathologies. Just a small fraction of the many recent discoveries are highlighted here:

 Xenopus contributes to our understanding of vertebrate genome organization. (Science. 2010. 328, 633-636).
 Xenopus egg extracts reveal fundamental aspects of cell division. (Cell. 2010. 140, 349-359; Nature. 2008. 453, 1132-6; Science. 2008. 319, 469-72).
 Xenopus reveals new aspects of eukaryotic nuclear structure and function. (Cell. 2010. 143, 288-98; Science. 2010. 318, 640-643).

Xenopus embryos are used for studies of Wnt and TGF- β signal transduction. (Science. 2010. 327, 459-463; Cell. 2009. 136,123-35).

Xenopus embryos are used for studying mucociliary epithelia. (Nat Cell. Biol. 2009 11 1225-32; Nature. 2007. 447, 97-101). *Xenopus* embryos are used for studying development of the vasculature. (*Cell.* 2008.135, 1053-64).

- Xenopus egg extracts provide key insights into DNA damage responses. (*Mol Cell.* 2009. 35,704-15; *Cell.* 2008.134, 969-80).
- Xenopus embryos link telomerase to Wnt signaling. (*Nature*. 2009. 460, 66-72).
- Xenopus are used for small molecule screens to develop therapeutics. (Nat Chem Biol. 2010. 6, 829-836; Blood. 2009. 114, 1110-22; Nat Chem Biol. 2008. 4, 119-25).

Despite its demonstrated utility and despite the recent investments by the NIH, <u>Xenopus</u> still lacks many resources that are considered entirely essential for other model systems. It is the consensus of the *Xenopus* community that their biomedical research could be greatly accelerated by the development of key resources of use to the entire *Xenopus* research community.

At the 2010 International *Xenopus* Conference, developmental, cell, and molecular biologists gathered to discuss the resources needed and the priority that should be assigned to each. There was broad community-wide consensus that eleven resources are currently needed, and these were prioritized into two categories: Immediate Needs and Essential Resources:

The Immediate Needs of the Xenopus research community:

1. Generation of the Xenopus ORFeome:

- -Will enable genome-wide in vivo analyses of gene function.
- -Will enable genome-wide in vivo analyses of protein localization.
- -Will enable, when combined with transgenesis, the first large-scale biochemical determination of protein-protein interactions in specific tissues and at specific embryonic stages.
- -Will facilitate more-rapid functional characterization of specific proteins.

2. Improvement of the Xenopus genome sequence:

-Will accelerate molecular studies by providing a complete catalogue of *Xenopus* genes.

-Will enable completion of the Xenopus ORFeomes.

-Will enable genomic analyses & systems biology approaches for novel gene discovery.

-Will facilitate proteomics approaches and peptide analysis.

Essential Resources for Xenopus research community:

In addition to these most-pressing needs, the community has identified nine other Essential Resources that should be developed as soon as possible, so that *Xenopus* biologists can more effectively fulfill the missions of the NIH. <u>The *Xenopus* community</u> considers all of these additional resources to be essential, but understands that priorities must be set, and therefore ranks these as indicated below:

3. <u>Improvement of long-range contiguity in the *Xenopus laevis* genome</u>

- 4. Improvement of Xenopus antibody resources
- 5. Loss of function: Zinc Finger Nucleases/TILLING
- 6. Loss of function: Small inhibitory hairpin RNAs
- 7. Novel loss of function/knockdown/knockout technologies
- 8. Intergenic annotation of the Xenopus genome

- 9. Improvements of the X. tropicalis genome long range contiguity
- 10. Additions and improvements to Xenbase: the Xenopus Model Organism Database

11. Frogbook: A comprehensive resource for methods in Xenopus biology

Community Recommendations for Attaining Resources:

The *Xenopus* Community feels that in order to attain these much needed resources <u>it will be imperative to renew the PAR-09-240/1: "Genetic and Genomic Analyses of *Xenopus*". This mechanism can help to direct funding to the establishment of resources that will accelerate research by the entire community. Development of research resources is essential to the NIH mission, but because such work is not hypothesis-driven, these proposals fare poorly in standard CSR study sections. Moreover, the standard study sections typically lack the depth of expertise that is needed to properly evaluate these proposals. The "Genetics and Genomic Analyses of *Xenopus*" PAR allows for a focused and expert review of resource development proposals, and its renewal will help to ensure a continuing return on the current NIH investment in biomedical research using *Xenopus*.</u>

The Xenopus Community also feels that, given the ease with which massive amounts of biological samples can be obtained using this organism, a new PAR to support systems biology using Xenopus is warranted. A new PAR in this area would allow all biomedical researchers to exploit the emerging genomic resources for Xenopus to perform systems-level analyses *in vivo*, in a vertebrate, and in a cost-effective manner. Such research would generate significant advances into the "New Biology" described below.

Anticipated Gains for Biomedical Research:

Xenopus as an animal model continues to have a broad impact for biomedical research. Given its already long history of large-scale screens of gene function and its broad use in molecular, cell, and developmental biology, the establishment of additional community-wide resources will greatly facilitate the impact of *Xenopus* as a premier vertebrate model for systems-level analyses.

The National Research Council and the National Academy of Sciences have recently called on the United States "to launch a new multiagency, multiyear, and multidisciplinary initiative to capitalize on the extraordinary advances recently made in biology". This report (http://www.nap.edu/catalog.php?record_id=12764) recommends the term "New Biology" to describe an approach to research where "physicists, chemists, computer scientists, engineers, mathematicians, and other scientists are integrated into the field of biology." The promise of systems-level analysis in *Xenopus*, combined with its already proven strengths, make *Xenopus* the ideal model organism for pursuing "New Biology."

Specifically, genome improvements will provide *Xenopus* researchers with the ability to perform genome-wide screens for biological activities that will in turn allow the rapid assembly and analysis of gene regulatory networks and their relationship to phenotypes. The ORFeome will greatly facilitate such genome-wide screening by allowing all ORFs to be rapidly analyzed or large numbers of proteins to be tagged for analysis of protein-protein interaction or for *in vivo* visualization. Using extracts and biochemical purification coupled with mass-spectrometry and genomic sequence, protein interactomes can be rapidly identified and validated. *Xenopus* offers a unique resource because it is the only *in vivo* vertebrate animal model that couples vast amounts of biological material and a sequenced genome, thus cell-type specific interactomes can also be identified. Large-

scale genetic screens will identify important novel genes in developmental pathways, especially given the relatively simple genome of *X. tropicalis* compared to zebrafish. Finally, the flexibility of both *Xenopus* extracts and embryos make this system ideal for chemical biology screens.

Identifying gene-regulatory networks, interactomes, and novel genes will be only the first steps. The well-established power of *Xenopus* for rapid analysis of gene function will then allow deeply mechanistic analyses to complement the systems-level approaches described above. It is the combination of these characteristics that distinguishes *Xenopus* from other vertebrate model systems such as mouse and zebrafish and allows for a systems-level approach to understanding biological mechanisms. The tremendous impact of the *Xenopus* model cannot be realized, however, without the immediate development of community-wide research resources. This White Paper presents the needed resources, and we look to the NIH for guidance in how to best achieve these goals.

For complete details of the 2011 *Xenopus* White Paper, please visit

http://www.xenbase.org/community/xenopuswhitepaper.do

Appendix

Project Number	Project Title	Activity	Principal Investigator	Organization Name	Total Cost
5K99GM084292-	MICROTUBULE	К99	AL-BASSAM,	HARVARD	\$72,306
02	POLYMERIZATION AND		JAWDAT MH	UNIVERSITY	
	DEPOLYMERIZATION			(MEDICAL	
	MECHANISMS BY			SCHOOL)	
	CONSERVED PROTEINS				
5R01GM046889-	STRUCTURE/FUNCTION	R01	BARGIELLO,	ALBERT EINSTEIN	\$480,696
16	OF GAP JUNCTIONS		THADDEUS	COL OF MED	
			ANDREW	YESHIVA UNIV	
3R01GM030376-	THE	R01	BEZANILLA,	UNIVERSITY OF	\$341,835
30S1	ELECTROPHYSIOLOGICAL		FRANCISCO J	CHICAGO	
	STUDIES OF VOLTAGE				
	GATED CHANNELS				
5R01GM066977-	TGFB SIGNALING IN	R01	BRIVANLOU,	ROCKEFELLER	\$311,788
08	VERTEBRATE		ALI H	UNIVERSITY	
	MESODERM INDUCTION				
3R01GM078502-	STRUCTURE/FUNCTION	R01	CHOI, INYEONG	EMORY	\$247,488
03S1	ANALYSIS OF THE			UNIVERSITY	
	NA/BICARBONATE				
	COTRANSPORTERS				
3K08GM083216-	VOLATILE ANESTHETIC	K08	COTTEN,	MASSACHUSETTS	\$108,000
02S1	REGULATION OF TASK		JOSEPH F	GENERAL	
	TANDEM PORE			HOSPITAL	
	POTASSIUM CHANNELS	504			4004460
5R01GM075249-	ROLES OF	R01	FUNABIKI,	ROCKEFELLER	\$304,460
05			HIRONORI	UNIVERSITY	
200100067759		P01	CAVIS	DDINICETON	¢157 756
0661		RUI			Ş457,750
0031			LLIZADLIIIN.	UNIVERSITY	
5R01GM023674-		R01	GRUNSTEIN		5638 080
33	FUNCTION	NOT	MICHAFI		<i>4030,000</i>
				ANGELES	
3R01GM052717-	BIOCHEMISTRY AND	R01	GUMBINER.	UNIVERSITY OF	\$234.053
14S1	REGULATION OF	-	BARRY M	VIRGINIA	, - ,
	CADHERIN ACTIVITY			CHARLOTTESVILLE	
5R01GM021784-	REACTIVE METABOLITES	R01	HANZLIK,	UNIVERSITY OF	\$299,466
32	IN DRUG TOXICITY		ROBERT P	KANSAS	-
				LAWRENCE	
5R01GM057839-	STUDYING MITOSIS	R01	HEALD,	UNIVERSITY OF	\$297 <i>,</i> 525
09	USING XENOPUS EGG		REBECCA W	CALIFORNIA	
	EXTRACTS			BERKELEY	

5R01GM019629- 38	GENETIC REGULATION OF PHOSPHOLIPID SYNTHESIS IN YEAST	R01	HENRY, SUSAN ARMSTRONG	CORNELL UNIVERSITY ITHACA	\$502 <i>,</i> 485
5R01GM072754- 06	MECHANISMS OF CENTROSOME REPRODUCTION IN ANIMAL CELLS	R01	HINCHCLIFFE, EDWARD H	UNIVERSITY OF MINNESOTA TWIN CITIES	\$254,722
5R01GM079427- 18	MOLECULAR PHYSIOLOGY OF VOLTAGE-GATED ION CHANNELS	R01	HORN, RICHARD J	THOMAS JEFFERSON UNIVERSITY	\$368,737
5R01GM050806- 16	REGULATION OF DNA REPLICATION IN S. POMBE	R01	KELLY, THOMAS J	SLOAN- KETTERING INSTITUTE FOR CANCER RES	\$441,477
5R01GM033932- 23	ESTABLISHING GERM CELL FATE IN XENOPUS	R01	KING, MARY LOU	UNIVERSITY OF MIAMI SCHOOL OF MEDICINE	\$349,123
3R01GM066492- 07S1	CHEMICAL GENETIC AND BIOCHEMICAL STUDIES OF MITOTIC PROTEOLYSIS	R01	KING, RANDALL W	HARVARD UNIVERSITY (MEDICAL SCHOOL)	\$199,678
3R01GM080333- 03S1	CONTROL OF CASPASE ACTIVATION IN APOPTOSIS	R01	KORNBLUTH, SALLY A	DUKE UNIVERSITY	\$225 <i>,</i> 036
3R01GM066815- 07S1	TRANSCRIPTIONAL REGULATION BY GEMININ	R01	KROLL, KRISTEN L	WASHINGTON UNIVERSITY	\$283,295
3R01GM081635- 03S1	BIOCHEMICAL RECONSTITUTION OF HETEROTRIMERIC G PROTEINS IN THE WNT PATHWAY	R01	LEE, ETHAN	VANDERBILT UNIVERSITY	\$59,134
5R01GM061829- 10	REGULATION OF CALCIUM SIGNALING DURING OOGENESIS	R01	MACHACA, KHALED	WEILL MEDICAL COLLEGE OF CORNELL UNIV	\$214,718
5T32GM008443- 17	THE GENETIC ARCHITECTURE OF QUANTITATIVE TRAITS	Т32	MACKAY, TRUDY F	NORTH CAROLINA STATE UNIVERSITY RALEIGH	\$142,538
3R01GM088790- 05A1S1	FUNCTIONAL ARCHITECTURE OF IP3- EVOKED LOCAL CA2+ SIGNALS	R01	MARCHANT, JONATHAN S	UNIVERSITY OF MINNESOTA TWIN CITIES	\$224,769
1U01GM094622- 01	PARTNERSHIP FOR HIGH-THROUGHPUT ENABLED BIOLOGY OF THE MITOCHONDRIAL	U01	MARKLEY, JOHN L	UNIVERSITY OF WISCONSIN MADISON	\$1,792,845

PROT	EOME
------	------

5R01GM078247- 04	BEYOND GFP AND AEQUORIN: OCEAN- WIDE STUDY OF FLUORESCENT AND LUMINOUS PROTEINS	R01	MATZ, MIKHAIL V	UNIVERSITY OF TEXAS AUSTIN	\$291,735
3R01GM066270- 07S1	MOLECULAR STRUCTURE AND FUNCTION OF THE HUMAN KINETOCHORE OUTER PLATE	R01	MCEWEN, BRUCE F	WADSWORTH CENTER	\$71,546
5R01GM086854- 11	NITRIC OXIDE SIGNALING IN HYPOXIA AND IMMUNITY IN DROSOPHILA	R01	O'FARRELL, PATRICK H	UNIVERSITY OF CALIFORNIA SAN FRANCISCO	\$337,871
5R25GM062881- 07	MSBRS RISE PROGRAM AT HASKELL INDIAN NATIONS UNIVERSITY	R25	O'MALLEY, JAMES DENNIS	HASKELL INDIAN NATIONS UNIVERSITY	\$441,375
5SC2GM084789- 03	NOVEL MECHANISMS OF EGFR GENE EXPRESSION REGULATION	SC2	PEREZ-TORRES, MARIANELA	UNIVERSITY OF PUERTO RICO MED SCIENCES	\$75,000
3R01GM083025- 02S1	SPECIFICITY OF EFFECTOR ACTIVATION BY RHO FAMILY GTPASES	R01	PETERSON, JEFFREY R	INSTITUTE FOR CANCER RESEARCH	\$229,307
5R01GM084104- 02	MOLECULAR MECHANISMS OF GENETIC RECOMBINATION IN MAMMALS	R01	PETUKHOVA, GALINA V.	HENRY M. JACKSON FDN FOR THE ADV MIL/MED	\$286,100
5R01GM059975- 09	FUNCTIONAL ANALYSIS OF VERTEBRATE NUCLEAR TRANSPORT	R01	POWERS, MAUREEN A.	EMORY UNIVERSITY	\$309,966
5R01GM076112- 04	BUILDING A SYSTEMS- LEVEL VIEW OF CELL CYCLE CHECKPOINTS	R01	SIBLE, JILL C	VIRGINIA POLYTECHNIC INST AND ST UNIV	\$222,162
3R01GM030758- 2852	CENTROSOME REDUPLICATION AND CONSEQUENCES OF CLEAVAGE FAILURE/PROLONGED MITOSIS	R01	SLUDER, GREENFIELD	UNIV OF MASSACHUSETTS MED SCH WORCESTER	\$186,599
5R01GM084318- 03	PATHOADAPTIVE EVOLUTION OF SALMONELLA	R01	SOKURENKO, EVGENI VENIAMINOVIC	UNIVERSITY OF WASHINGTON	\$543,602
5R01GM076599- 04	TRAF4 IN TGF-BETA SIGNALING AND	R01	THOMSEN, GERALD H	STATE UNIVERSITY NEW	\$290,606

	EMBRYONIC DEVELOPMENT			YORK STONY BROOK	
5SC3GM084771- 02	MOLECULAR ANALYSIS OF ORIT-INDEPENDENT TRANSFER IN THE GONOCOCCAL R- PLASMIDS	SC3	TORRES- BAUZA, LUIS	UNIVERSITY OF PUERTO RICO MED SCIENCES	\$112,500
5R01GM074104- 05	MECHANISM OF VERTEBRATE NEURAL TUBE MORPHOGENESIS	R01	WALLINGFORD, JOHN B	UNIVERSITY OF TEXAS AUSTIN	\$280,998
5R01GM062267- 09	PROPERTIES OF THE EUKARYOTIC REPLICATIVE DNA HELICASE	R01	WALTER, JOHANNES	HARVARD UNIVERSITY (MEDICAL SCHOOL)	\$337,398
3R01GM081489- 02S1	ROLE OF UBP-M AND H2A DEUBIQUITINATION IN CHROMATIN AND CELLULAR FUNCTION	R01	WANG, HENGBIN	UNIVERSITY OF ALABAMA AT BIRMINGHAM	\$202,813
3R01GM050942- 13S1	FUNCTION OF 3'UTRS	R01	WICKENS, MARVIN P.	UNIVERSITY OF WISCONSIN MADISON	\$473,266
5R01GM079139- 03	MICROTUBULE DYNAMICS DURING CELL POLARITY AND MIGRATION	R01	WITTMANN, TORSTEN	UNIVERSITY OF CALIFORNIA SAN FRANCISCO	\$282,202
3R01GM073863- 04S1	RNA QUALITY CONTROL AND ENVIRONMENTAL STRESS	R01	WOLIN, SANDRA L.	YALE UNIVERSITY	\$78 <i>,</i> 408
5R01GM073863- 04	RNA QUALITY CONTROL AND ENVIRONMENTAL STRESS	R01	WOLIN, SANDRA L.	YALE UNIVERSITY	\$399,154
5R01GM061542- 09	REGULATION OF THE ANAPHASE-PROMOTING COMPLEX BY THE SPINDLE CHECKPOINT	R01	YU, HONGTAO	UNIVERSITY OF TEXAS SW MED CTR/DALLAS	\$304,894
3R01GM084879- 02S1	EVOLUTION OF SODIUM CHANNEL GENES	R01	ZAKON, HAROLD H	UNIVERSITY OF TEXAS AUSTIN	\$271,398
				Total	\$14,880,910